Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(28): 33819-33828, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37418573

RESUMO

The strategy of acceptor modification is a powerful technique for tuning the emission color of thermally activated delayed fluorescence (TADF) emitters. In this study, we have successfully designed and synthesized three TADF emitters with donor-acceptor (D-A) structures using a 4-(diphenylamino)-2,6-dimethylphenyl (TPAm) donor and various pyridine-3,5-dicarbonitrile (PC) acceptor units. As a result, three compounds named TPAmbPPC, TPAm2NPC, and TPAmCPPC exhibited greenish-yellow to orange-red emissions with high photoluminescent quantum yields (76-100%) in thin films. Remarkably, a greenish-yellow device based on TPAmbPPC and TPAm2NPC showed a high maximum external quantum efficiency (EQEmax) of 39.1 and 39.0%, respectively. Furthermore, benefiting from the suitable steric hindrance between the acceptor and donor, the nondoped organic light-emitting diodes (OLEDs) based on TPAmbPPC demonstrated an exceptional EQEmax of 21.6%, indicating its promising potential as an efficient emitter for the application of OLED applications. Furthermore, orange-red OLED devices based on TPAmCPPC exhibited a high EQEmax of 26.2%, a CE of 50.1 cd A-1, and a PE of 52.4 lm W-1.

2.
Chem Sci ; 13(44): 12996-13005, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36425506

RESUMO

Owing to the high technology maturity of thermally activated delayed fluorescence (TADF) emitter design with a specific molecular shape, extremely high-performance organic light-emitting diodes (OLEDs) have recently been achieved via various doping techniques. Recently, undoped OLEDs have drawn immense attention because of their manufacturing cost reduction and procedure simplification. However, capable materials as host emitters are rare and precious because general fluorophores in high-concentration states suffer from serious aggregation-caused quenching (ACQ) and undergo exciton quenching. In this work, a series of diboron materials, CzDBA, iCzDBA, and tBuCzDBA, is introduced to realize the effect of steric hindrance and the molecular aspect ratio via experimental and theoretical studies. We computed transition electric dipole moment (TEDM) and molecular dynamics (MD) simulations as a proof-of-concept model to investigate the molecular stacking in neat films. It is worth noting that the pure tBuCzDBA film with a high horizontal ratio of 92% is employed to achieve a nondoped OLED with an excellent external quantum efficiency of 26.9%. In addition, we demonstrated the first ultrathin emitting layer (1 nm) TADF device, which exhibited outstanding power efficiency. This molecular design and high-performance devices show the potential of power-saving and economical fabrication for advanced OLEDs.

3.
Org Lett ; 24(15): 2915-2920, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35404623

RESUMO

Herein, we report the nickel-catalyzed denitrogenative cyclization reaction of 1,2,3,4-benzothiatriazine-1,1-dioxides with arynes to generate the polysubstituted biaryl sultams with tolerance of a wide diversity of substituents on every subunit. The mechanistic study indicates that the reaction is initiated by the formation of a diradical species, which reacts with a nickel complex to form a nickelacycle intermediate and carries out the subsequent cyclization through insertion of an aryne.


Assuntos
Níquel , Catálise , Ciclização , Naftalenossulfonatos , Estereoisomerismo
4.
Adv Mater ; 33(35): e2008032, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34297444

RESUMO

Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid-state lighting and full-color displays. Here, the design and synthesis of three triarylamine-pyridine-carbonitrile-based TADF compounds, TPAPPC, TPAmPPC, and tTPAmPPC, are shown. They exhibit excellent photoluminescence quantum yields of 79-100% with small ΔEST values, fast reverse intersystem crossing (RISC), and high horizontal dipole ratios (Θ//  = 86-88%) in the thin films leading to the enhancement of device light outcoupling. Consequently, a green organic light-emitting diode (OLED) based on TPAmPPC shows a high average external quantum efficiency of 38.8 ± 0.6%, a current efficiency of 130.1 ± 2.1 cd A-1 , and a power efficiency of 136.3 ± 2.2 lm W-1 . The highest device efficiency of 39.8% appears to be record-breaking among TADF-based OLEDs to date. In addition, the TPAmPPC-based device shows superior operation lifetime and high-temperature resistance. It is worth noting that the TPA-PPC-based materials have excellent optical properties and the potential for making them strong candidates for TADF practical application.

5.
ACS Omega ; 6(16): 10515-10526, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-34056206

RESUMO

A series of new functional pyridine-appended pyrene derivatives, viz., 2,6-diphenyl-4-(pyren-1-yl)pyridine (Py-03), 2,6-bis(4-methoxyphenyl)-4-(pyren-1-yl)pyridine (Py-MeO), 4-(pyren-1-yl)-2,6-di-p-tolylpyridine (Py-Me), and 2,6-bis(4-bromophenyl)-4-(pyren-1-yl)pyridine (Py-Br) were designed, developed, and studied as the hole-transporting materials (HTMs) for organic light-emitting diode (OLED) application. The crystal structures of two molecules revealed to have a large dihedral angle between the pyrene and pyridine units, indicating poor π-electronic communication between them due to ineffective orbital overlap across the pyrene-pyridine systems as the two p-orbitals of pivotal atoms are twisted at 66.80° and 68.75° angles to each other in Py-03 and Py-Me, respectively. The influence of variedly functionalized pyridine units on the electro-optical properties and device performance of the present integrated system for OLED application was investigated. All of the materials have suitable HOMO values (5.6 eV) for hole injection by closely matching the HOMOs of indium tin oxide (ITO) and the light-emitting layer. All of the synthesized molecules have suitable triplet energies, glass transition temperatures, and melting temperatures, which are highly desirable for good HTMs. The pyrene-pyridine-based devices demonstrated stable performance with low-efficiency roll-off. The device with Py-Br as HTM showed a maximum luminance of 17300 cd/m2 with a maximum current efficiency of 22.4 cd/A and an EQE of 9% at 3500 cd/m2 with 7% roll-off from 1000 to 10 000 cd/m2. Also, the devices with Py-Me and Py-03 showed performance roll-up while moving from 1000 to 10 000 cd/m2.

6.
J Org Chem ; 86(10): 7256-7262, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33955757

RESUMO

A unique strategy for the attainment of a discotic nematic (ND) mesophase is reported consisting of a central benzene core to which are attached two 4-alkylphenyl and two 4-pentylbiphenyl moieties diagonally via alkynyl linkers. The rotational nature and incompatibility of unequal phenylethynyl units led to the disruption of π-π interactions within cores that aids to the realization of ND phase and favors high solid-state emission. When used in OLEDs, compounds act as an efficient solid-state pure deep-blue emitter with Commission Internationale de L'Eclairage (CIEx,y) coordinates of (0.16, 0.07).

7.
Org Lett ; 22(16): 6623-6627, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32806142

RESUMO

A novel procedure for the transition-metal-free tandem cyclization/N-arylation reaction sequence of an aryne with a 1,2,3,4-benzothiatriazine-1,1-dioxide is reported. This reaction goes through the intramolecular homolytic cyclization to generate an N-H biaryl sultam intermediate, which enables aryne insertion to access diversely functionalized biaryl sultam derivatives with high yields. The mechanism study indicates that homolytic cyclization is executed by a diradical species, initiated from the thermal decomposition of 1,2,3,4-benzothiatriazine-1,1-dioxide to release a nitrogen molecule.

8.
ACS Appl Mater Interfaces ; 12(20): 23199-23206, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32326694

RESUMO

For the application of organic light-emitting diodes (OLEDs) in lighting and panels, the basic requirement is to include a full spectrum color range. Compared with the development of blue and green luminophores in thermally activated delayed fluorescence (TADF) technology, the progress of orange-to-red materials is slow and needs further investigation. In this study, three diboron compound-based materials, dPhADBA, dmAcDBA, and SpAcDBA, were designed and synthesized by nucleophilic arylation of three amine donors on 9,10-diboraanthracene (DBA) in a two-step reaction. With increasing electron-donating ability, they show orange-to-red emission with TADF characteristics. The electroluminescence of these diboron compounds exhibits emissions λmax at 613, 583, and 567 nm for dPhADBA, dmAcDBA, and SpAcDBA, respectively. It is noteworthy that the rod-like D-A-D structures can achieve high horizontal ratios (84-86%) and outstanding device performance for orange-to-red TADF OLEDs: the highest external quantum efficiencies for dPhADBA, dmAcDBA, and SpAcDBA are 11.1 ± 0.5, 24.9 ± 0.5, and 30.0 ± 0.8%, respectively. Therefore, these diboron-based molecules offer a promising avenue for the design of orange-to-red TADF emitters and the development of highly efficient orange-to-red OLEDs.

9.
ACS Appl Mater Interfaces ; 11(21): 19294-19300, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31046225

RESUMO

Exciplex emitters have emerged as an important class of thermally activated delayed fluorescence (TADF) materials for highly efficient OLEDs. A TADF exciplex emitter requires an intermolecular donor/acceptor pair. We have synthesized a bipolar donor-type material, DPSTPA, which was used to pair with known acceptor materials (2CzPN, 4CzIPN, or CzDBA). The OLEDs based on the exciplex emitters, DPSTPA/X, where X = 2CzPN and CzDBA, give green and orange-red colors with record-high external quantum efficiencies (EQEs) of 19.0 ± 0.6 and 14.6 ± 0.4%, respectively. In contrast, the exciplex pair DPSTPA/4CzIPN gave a very low photoluminescence quantum yield (PLQY) and a very low EQE value of the device. The DFT calculations indicate that the intermolecular distance between the donor and the acceptor plays a key factor for the PLQY and EQE. The observed low PLQY and the poor device performance for the DPSTPA/4CzIPN pair are probably because of the relatively long distance between the DPSTPA and 4CzIPN in the thin film caused by the four congested carbazole (Cz) groups of 4CzIPN, which effectively block the interaction of the nitrile acceptor with the triphenylamino donor of DPSTPA.

10.
ACS Appl Mater Interfaces ; 11(19): 17128-17133, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31038911

RESUMO

Three new quinoline TADF emitters, 2QPM-mDC, 2QPM-mDTC, and 4QPM-mDTC, were designed and synthesized and the emitters show Δ EST as low as 0.07 eV and high PL quantum yield (PLQY) up to 98%. An electroluminescence device based on 2QPM-mDTC can reach high EQE over 24%. Compared with the reported TADF devices, the device shows narrow emission bandwidth and high color purity. The excellent device performance is likely ascribed to the molecular design of 2QPM-mDTC containing an intramolecular H-bonding in the molecule.

11.
ACS Appl Mater Interfaces ; 11(23): 21042-21048, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31088068

RESUMO

Three pyridine-carbonitrile-carbazole-based thermally activated delayed fluorescence (TADF) materials with highly sterically congested structures have been synthesized. The donor-acceptor-type TADF emitters (26-, 246-, and 35tCzPPC) consist of a 2,6-diphenylpyridine-3,5-dicarbonitrile core (PPC) as the acceptor and a di( t-butyl)carbazole-substituted phenyl group attached to C4 of the PC core as the donor. The molecules show a unique structure containing two consecutive large twisted angles along the donor and acceptor groups. The structure leads to a nearly complete space separation of the highest occupied molecular orbital and lowest unoccupied molecular orbital, a small Δ EST value, and excellent TADF property. Moreover, the 26- and 246tCzPPC dopants favor a horizontal alignment enhancing the light outcoupling of the device. In contrast, 35tCzPPC favors a perpendicular alignment reducing the light outcoupling efficiency of the device. The 246tCzPPC-based devices show external quantum efficiency as high as 29.6% because of excellent TADF property, very high photoluminescence quantum yield, and high Θ value in the thin films. The device performance is the best among the pyridine-carbonitrile-based TADF emitters.

12.
Chemistry ; 25(40): 9366-9384, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31116458

RESUMO

Catalytic C-H functionalization has emerged as an efficient alternative to traditional coupling reactions. However, some of these reactions depend on environmentally harmful solvents, weakening the overall green nature of these methods. As organic processes consume large amount of solvents, the use of less harmful solvents enhance the sustainability of these reactions. Herein, we present an overview of transition metal-catalyzed C-H functionalization reactions for the synthesis of heterocycles in sustainable solvents based on CHEM21 solvent selection guide.

13.
ACS Appl Mater Interfaces ; 11(11): 10768-10776, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30777421

RESUMO

Five emitters CzAZB, tBuCzAZB, tmCzAZB, dmAcAZB, and PxzAZB based on dibenzo-1,4-azaborine as the electron acceptors and two identical amine groups as the donors were designed and synthesized. The dihedral angles between the planes of dibenzo-1,4-azaborine acceptors and amine-based donors greatly affect the thermally activated delayed fluorescence (TADF) property of these materials. A simple concept "steric switching" is introduced to predict whether the emitter possesses TADF property. CzAZB and tBuCzAZB, with very high photoluminescence quantum yields (PLQYs) but small dihedral angles, do not show TADF. In contrast, tmCzAZB reveals a PLQY of only 56% but with a large dihedral angle due to the presence of two methyl groups at C1 and C8 of the carbazole groups, the steric switching operates, and the compound shows TADF property with a deep-blue color having CIE coordinates of (0.14, 0.15). In a similar manner, in dmAcAZB and PxzAZB with high PLQYs and large dihedral angles between the donor and acceptor planes, the "TADF steric switch" readily operates to achieve device external quantum efficiencies as high as 20.8 ± 1.2 and 27.5 ± 1.9% with blue and green emissions, respectively.

14.
Beilstein J Org Chem ; 14: 2266-2288, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202481

RESUMO

As an earth-abundant first-row transition metal, cobalt catalysts offer a broad range of economical methods for organic transformations via C-H activation. One of the transformations is the addition of C-H to C-X multiple bonds to afford alkylation, alkenation, amidation, and cyclization products using low- or high-valent cobalt catalysts. This hydroarylation is an efficient approach to build new C-C bonds in a 100% atom-economical manner. In this review, the recent developments of Co-catalyzed hydroarylation reactions and their mechanistic studies are summarized.

15.
J Org Chem ; 83(15): 7814-7824, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-29896964

RESUMO

Reaction mechanisms for the synthesis of indenamines, indenols, and isoquinolinium salts through cobalt- and rhodium-catalysis were investigated using density functional theory calculations. We found that the valence charge of transition metals dramatically influences the reaction pathways. Catalytic reactions involving lower-oxidation-state transition metals (MI/MIII, M = Co and Rh) generally favor a [3 + 2] cyclization pathway, whereas those involving higher oxidation states (MIII/MV) proceed through a [4 + 2] cyclization pathway. A catalytic cycle with novel MIII/MV as a crucial species was successfully revealed for isoquinolinium salts synthesis, in which highly valent MV was encountered not only in the [RhCp*]-catalysis but also in the [CoCp*]-catalysis.

16.
Chem Asian J ; 13(13): 1664-1668, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29676048

RESUMO

Hydroarylation of bicyclic alkenes has been developed using a low-valent ReI -catalyzed, directing group-assisted C-H bond activation strategy. The addition of sodium acetate significantly improves the reaction efficiency; moreover, bicyclic alkenes such as 7-oxa and aza benzonorbornadienes worked efficiently under this reaction condition. Preliminary mechanistic studies suggest that, after the alkene insertion, the rhenacycle preferentially undergoes protonolysis rather than reductive elimination.

17.
Inorg Chem ; 57(8): 4448-4455, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29600849

RESUMO

We developed a new method by enclosing the complex tris(2-phenylpyridinato-N,C2')Iridium(III), Ir(ppy)3 with surfactant cetyltrimethylammonium bromide (CATB), coated with a thin layer of silica then bonded to the surface of silver nanoparticle. These samples were used to acquire surface-enhanced Raman scattering (SERS) spectra. The thickness of silica layer was controlled to have efficient phosphorescence quenching and Raman enhancement by metal nanoparticle. The SERS spectra of fac- and mer-Ir(ppy)3, recorded at 633 nm excitation, display distinct ring breathing mode features because the total symmetric vibrational bands were enhanced. This provides a convenient means to differentiate these isomers with great sensitivity and to study their isomerization process. A direct conversion reaction of mer- to fac- isomerization is identified with time constant 3.1 min when mer was irradiated with Xe light. Via thermal activation, under moderate conditions (pH 5.5 and 343 K), we observed an intermediate particularly with new bands 320/662 cm-1 after heating for 17.5 h, and then those bands disappeared to form fac-Ir(ppy)3. On the basis of DFT calculations, the intermediate is proposed to contain octahedral N-N Ir(ppy)3-HO-silica structure; band at 320 cm-1 is assigned to iridium oxygen stretching mode νIr-O of this intermediate. Under acidic conditions, pH 1-2 catalyzed by silanol in silica, byproduct with band at 353 cm-1 was observed. According to the SERS bands and the calculation, this byproduct is assigned to be iridium(III) siloxide, and the new band is assigned to νIr-O.

18.
Adv Mater ; 30(7)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29271524

RESUMO

In this study, a novel perovskite quantum dot (QD) spray-synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic-shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield ≈100% in the solution and even in the solid-state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD-LED (ccQD-LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W-1 , and extraordinary forward-direction luminescence of 8 500 000 cd m-2 . The conceptual ccQD-OLED hybrid display also successfully demonstrates high-definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives-P3 color gamut. These very-stable, ultra-bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics.

19.
J Am Chem Soc ; 139(47): 17015-17021, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29088912

RESUMO

An Fe(III)-promoted oxidative annulation reaction was developed for the synthesis of 1,2-naphthoquinones. A variety of substituted arylglyoxals and internal alkynes undergo the transformation in the presence of FeCl3 at room temperature to afford the 1,2-naphthoquinone products in good yields in a short reaction time. Interestingly, the products show unusual pseudomigration of the substituent on the arene ring of arylglyoxals. A possible mechanism involving Fe(III)-promoted formation of a vinyl cation from arylglyoxal and alkyne, electrophilic addition of the vinyl cation to the ipso carbon of the aryl group to give a spiral intermediate, and then migration of the keto carbon to the ortho carbon was proposed as key steps and verified using quantum mechanics.

20.
Chem Commun (Camb) ; 53(84): 11584-11587, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28990605

RESUMO

An efficient Co-catalyzed 1,4-addition reaction of alkyl/aryl triflates and tosylates with activated alkenes is described. In this reaction, an air-stable cobalt(ii) complex, a mild reducing agent Zn and a simple proton source (H2O) are used. A radical mechanism for the addition of alkyl tosylates to activated alkenes is likely involved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA