Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
2.
Mol Med ; 30(1): 91, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886655

RESUMO

Glioma is the most common malignant tumor of the central nervous system, with EZH2 playing a crucial regulatory role. This study further explores the abnormal expression of EZH2 and its mechanisms in regulating glioma progression. Additionally, it was found that IHMT-337 can potentially be a therapeutic agent for glioma. The prognosis, expression, and localization of EZH2 were determined using bioinformatics, IHC staining, Western blot (WB) analysis, and immunofluorescence (IF) localization. The effects of EZH2 on cell function were assessed using CCK-8 assays, Transwell assays, and wound healing assays. Public databases and RT-qPCR were utilized to identify downstream targets. The mechanisms regulating these downstream targets were elucidated using MS-PCR and WB analysis. The efficacy of IHMT-337 was demonstrated through IC50 measurements, WB analysis, and RT-qPCR. The effects of IHMT-337 on glioma cells in vitro were evaluated using Transwell assays, EdU incorporation assays, and flow cytometry. The potential of IHMT-337 as a treatment for glioma was assessed using a blood-brain barrier (BBB) model and an orthotopic glioma model. Our research confirms significantly elevated EZH2 expression in gliomas, correlating with patient prognosis. EZH2 facilitates glioma proliferation, migration, and invasion alongside promoting SLC12A5 DNA methylation. By regulating SLC12A5 expression, EZH2 activates the WNK1-OSR1-NKCC1 pathway, enhancing its interaction with ERM to promote glioma migration. IHMT-337 targets EZH2 in vitro to inhibit WNK1 activation, thereby suppressing glioma cell migration. Additionally, it inhibits cell proliferation and arrests the cell cycle. IHMT-337 has the potential to cross the BBB and has successfully inhibited glioma progression in vivo. This study expands our understanding of the EZH2-SLC12A5 axis in gliomas, laying a new foundation for the clinical translation of IHMT-337 and offering new insights for precision glioma therapy.


Assuntos
Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste , Glioma , Glioma/metabolismo , Glioma/genética , Glioma/patologia , Glioma/tratamento farmacológico , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Humanos , Animais , Linhagem Celular Tumoral , Camundongos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto , Prognóstico
3.
Cell Metab ; 36(5): 1059-1075.e9, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38458203

RESUMO

Mitochondrial cristae, infoldings of the mitochondrial inner membrane, undergo aberrant changes in their architecture with age. However, the underlying molecular mechanisms and their contribution to brain aging are largely elusive. Here, we observe an age-dependent accumulation of Glu-5'tsRNA-CTC, a transfer-RNA-derived small RNA (tsRNA), derived from nuclear-encoded tRNAGlu in the mitochondria of glutaminergic neurons. Mitochondrial Glu-5'tsRNA-CTC disrupts the binding of mt-tRNALeu and leucyl-tRNA synthetase2 (LaRs2), impairing mt-tRNALeu aminoacylation and mitochondria-encoded protein translation. Mitochondrial translation defects disrupt cristae organization, leading to damaged glutaminase (GLS)-dependent glutamate formation and reduced synaptosomal glutamate levels. Moreover, reduction of Glu-5'tsRNA-CTC protects aged brains from age-related defects in mitochondrial cristae organization, glutamate metabolism, synaptic structures, and memory. Thus, beyond illustrating a physiological role for normal mitochondrial cristae ultrastructure in maintaining glutamate levels, our study defines a pathological role for tsRNAs in brain aging and age-related memory decline.


Assuntos
Envelhecimento , Ácido Glutâmico , Camundongos Endogâmicos C57BL , Mitocôndrias , Biossíntese de Proteínas , Animais , Ácido Glutâmico/metabolismo , Envelhecimento/metabolismo , Mitocôndrias/metabolismo , Camundongos , Masculino , Humanos , Neurônios/metabolismo , Glutaminase/metabolismo , Glutaminase/genética , Membranas Mitocondriais/metabolismo , Encéfalo/metabolismo
4.
Chin Neurosurg J ; 9(1): 29, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853457

RESUMO

BACKGROUND: Calcifying pseudoneoplasm of the neuraxis (CAPNON) is indeed a rare central nervous system lesion that can occur in central nervous system (CNS). Due to its infrequency and limited literature reports, it is challenging to diagnose and manage CAPNON. CASE PRESENTATION: In this intriguing study, we embarked on a quest to uncover the story of a 16-year-old girl who experienced bothersome headaches. Through advanced imaging techniques like computed tomography (CT) and magnetic resonance imaging (MRI), we glimpsed a delicate calcified growth within the lateral ventricles' posterior horn. Motivated by our unwavering commitment to solving mysteries, we embarked on a surgical journey that not only freed the young patient from her ailment but also shed light on the true nature of her puzzling adversary-a remarkable CAPNON. CONCLUSIONS: For patients with CAPNON who have multiple or non-respectable lesions, the primary goal is to alleviate symptoms. After alleviating the symptoms with partial resection, close monitoring of any residual lesions is essential. If there is no evidence for disease progression, a strategy of continued close observation is appropriate.

5.
Cancer Gene Ther ; 30(12): 1702-1714, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37845349

RESUMO

Glioblastoma is the most common malignant tumor in the central nervous system. The general transcription factor IIE subunit beta (GTF2E2) is crucial for physiological and pathological functions, but its roles in the malignant biological function of glioma remain ambiguous. CCK-8, colony formation assays, TUNEL assays, cell migration assays, wound-healing assays, and xenograft model were established to investigate the biological functions of GTF2E2 both in vitro and in vivo. GTF2E2 was overexpressed in glioma and was associated with poor prognosis of glioma patients. Biological functions of GTF2E2 were investigated both in vitro and in vi0vo by multiple experiments. Moreover, we explored the possible mechanisms of GTF2E2. In our results, we demonstrated that GTF2E2 could be regulated by miR-340-5p directly or indirectly. CCND1 was transcriptionally affected by GTF2E2 and glioma progression was then regulated. Our data presented the overexpression of GTF2E2 in glioma and indicated the association between GTF2E2 and glioma prognosis. GTF2E2 was found to be regulated by miR-340-5p and thus affect downstream gene expressions and glioma progression. Our results indicate that GTF2E2 might be a potential target in the diagnosis and treatments of glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , MicroRNAs , Fatores de Transcrição TFII , Humanos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Glioma/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo
6.
Cell Discov ; 9(1): 55, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308475

RESUMO

Understanding tumor heterogeneity and immune infiltrates within the tumor-immune microenvironment (TIME) is essential for the innovation of immunotherapies. Here, combining single-cell transcriptomics and chromatin accessibility sequencing, we profile the intratumor heterogeneity of malignant cells and immune properties of the TIME in primary central nervous system diffuse large B-cell lymphoma (PCNS DLBCL) patients. We demonstrate diverse malignant programs related to tumor-promoting pathways, cell cycle and B-cell immune response. By integrating data from independent systemic DLBCL and follicular lymphoma cohorts, we reveal a prosurvival program with aberrantly elevated RNA splicing activity that is uniquely associated with PCNS DLBCL. Moreover, a plasmablast-like program that recurs across PCNS/activated B-cell DLBCL predicts a worse prognosis. In addition, clonally expanded CD8 T cells in PCNS DLBCL undergo a transition from a pre-exhaustion-like state to exhaustion, and exhibit higher exhaustion signature scores than systemic DLBCL. Thus, our study sheds light on potential reasons for the poor prognosis of PCNS DLBCL patients, which will facilitate the development of targeted therapy.

7.
Pathol Res Pract ; 240: 154176, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36327817

RESUMO

Cholesterol serves a vital role in the occurrence and development of glioblastoma multiforme (GBM). Furthermore, cholesterol synthesis is regulated by sterol regulatory element-binding protein 2 (SREBP2), and certain glucose transporters (GLUTs) and Ras-related protein Rab11 (Rab11) small GTPase family members (Rab11s) may contribute to the process. The Cancer Genome Atlas was used to analyze the relationship between prognosis and GLUT gene expressions. To investigate the regulatory effect of Rab11s and SREBP2 on GLUTs during tumor progression, single cell RNA sequencing (scRNA-seq), western blotting and reverse transcription-quantitative PCR were performed on glioma tissues and the T98G GBM cell line. Cell viability and migration were assessed by performing MTT and wound healing assays, respectively. Moreover, the dual-luciferase reporter gene assay was conducted to predict the sterol regulatory elements in the promoter regions of the target genes. The results demonstrated that high SREBP2, GLUT1 and GLUT6 expression was associated with poor survival of patients with GBM. ScRNA-seq distinguished glioblastoma cells by EGFR and indicated the related lipid metabolism signaling pathways. Moreover, the results indicated that GLUT1 and GLUT6 were regulated by SREBP2 and Rab11s. Rab11s and SREBP2 also contributed to T98G cell viability and migration. Additionally, the results indicated that Rab11s, GLUT1 and GLUT6 were transcriptionally regulated by SREBP2. Therefore, the present study suggested that the SREBP2/Rab11/GLUT network promoted T98G cell growth, thus, identifying potential therapeutic targets for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Colesterol , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Esteróis
8.
Anal Cell Pathol (Amst) ; 2022: 2376288, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757013

RESUMO

Gliosarcoma (GSM), a histologic variant of glioblastoma (GBM), carries a poor prognosis with less than one year of median survival. Though GSM is similar with GBM in most clinical and pathological symptoms, GBM has unique molecular and histological features. However, as the rarity of GSM samples, the genetic information of this tumor is still lacking. Here, we take a comprehensive analysis of DNA copy number variations (CNV) in GBM and GSM. Whole genome sequencing was performed on 21 cases of GBM and 15 cases of GSM. CNVKIT is used for CNV calling. Our data showed that chromosomes 7, 8, 9, and 10 were the regions where CNV frequently happened in both GBM and GSM. There was a distinct CNV signal in chromosome 2 especially in GSM. The pathway enrichment of genes with CNV was suggested that the GBM and GSM shared the similar mechanism of tumor development. However, the CNV of some screened genes displayed a disparate form between GBM and GSM, such as AMP, BEND2, HDAC6, FOXP3, ZBTB33, TFE3, and VEGFD. It meant that GSM was a distinct subgroup possessing typical biomarkers. The pathways and copy number alterations detected in this study may represent key drivers in gliosarcoma oncogenesis and may provide a starting point toward targeted oncologic analysis with therapeutic potential.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Gliossarcoma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Variações do Número de Cópias de DNA/genética , Genômica , Glioblastoma/genética , Glioblastoma/patologia , Gliossarcoma/genética , Gliossarcoma/patologia , Gliossarcoma/terapia , Humanos
9.
Environ Toxicol ; 37(9): 2133-2142, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35506701

RESUMO

The effects of ISG15 or ISGylation on tumor progression have been widely revealed; however, its roles in glioma progression are largely unknown. This study aims to explore the roles and underlying mechanisms of ISG15 in glioma progression. Here, ISG15 level was found to be upregulated in glioma tissues compared to the paired/unpaired normal tissues, and positively correlated with the level of stemness markers in glioma tissues. Loss of functional experiments indicated that ISG15 positively regulated glioma cell stemness, as evident by the increase of sphere formation ability, ALDH activity, stemness marker expression, and tumor-initiating ability. Further mechanistic studies revealed that ISG15 directly interacted with Oct4 protein, a critical stemness promoter, induced the ISGylation of Oct4 protein, and thus enhanced Oct4 protein stability. Additionally, it was found that Oct4 was ISGylated at lysine 284 (K284), which has been confirmed to be the ubiquitination site of Oct4 protein, and ISG15 knockdown did not degrade K284R mutant Oct4. Furthermore, ISG15 knockdown-induced downregulation of glioma cell stemness was rescued by Oct4 overexpression, but not by K284R mutant Oct4. Altogether, we suggest that ISG15-induced ISGylation of Oct4 protein is essential for glioma cell stemness.


Assuntos
Citocinas , Glioma , Fator 3 de Transcrição de Octâmero , Ubiquitinas , Citocinas/genética , Citocinas/metabolismo , Regulação para Baixo , Glioma/genética , Humanos , Células-Tronco Neoplásicas , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Estabilidade Proteica , Ubiquitinação , Ubiquitinas/genética , Ubiquitinas/metabolismo
10.
Front Oncol ; 11: 595285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34041015

RESUMO

Neuroblastoma is the most common extracranial neuroendocrine tumor in childhood. Although many studies have tried to find effective treatments, there are still numerous limitations in current clinical targeted therapy. So, it is important to find new therapeutic targets and strategies from a new perspective. Our previous study reported that the androgen receptor (AR) promotes the growth of neuroblastoma in vitro and in vivo. Based on documentary investigation, we postulated that the AR-SCAP-SREBPs-CYP17/HMGCR axis may regulate cholesterol and androgens synthesis and form a positive enhancement loop promoting NB progression. Clinical samples and Oncomine database analysis proved the activation of AR-SCAP-SREBPs-CYP17/HMGCR axis in neuroblastoma. The combination of inhibitors of HMGCR (statins) and CYP17A1 (abiraterone acetate) showed synergistic effect that significantly inhibited the proliferation and migration with decreased expression of related genes detected in vitro and in vivo suggesting the dual-targeted therapy had the potential to inhibit the progression of neuroblastoma in spite of its MYCN status. This study provides new ideas for clinical treatment of neuroblastoma with efficacy and reduced toxicity.

11.
Neural Regen Res ; 16(12): 2453-2464, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33907034

RESUMO

The SOCS1/JAK2/STAT3 axis is strongly associated with tumor growth and progression, and participates in cytokine secretion in many diseases. However, the effects of the SOCS1/JAK2/STAT3 axis in experimental subarachnoid hemorrhage remain to be studied. A subarachnoid hemorrhage model was established in rats by infusing autologous blood into the optic chiasm pool. Some rats were first treated with JAK2/STAT3 small interfering RNA (Si-JAK2/Si-STAT3) or overexpression plasmids of JAK2/STAT3. In the brains of subarachnoid hemorrhage model rats, the expression levels of both JAK2 and STAT3 were upregulated and the expression of SOCS1 was downregulated, reaching a peak at 48 hours after injury. Simultaneously, the interactions between JAK2 and SOCS1 were reduced. In contrast, the interactions between JAK2 and STAT3 were markedly enhanced. Si-JAK2 and Si-STAT3 treatment alleviated cortical neuronal cell apoptosis and necrosis, destruction of the blood-brain barrier, brain edema, and cognitive functional impairment after subarachnoid hemorrhage. This was accompanied by decreased phosphorylation of JAK2 and STAT3 protein, decreased total levels of JAK2 and STAT3 protein, and increased SOCS1 protein expression. However, overexpression of JAK2 and STAT3 exerted opposite effects, aggravating subarachnoid hemorrhage-induced early brain injury. Si-JAK2 and Si-STAT3 inhibited M1-type microglial conversion and the release of pro-inflammatory factors (inducible nitric oxide synthase, interleukin-1ß, and tumor necrosis factor-α) and increased the release of anti-inflammatory factors (arginase-1, interleukin-10, and interleukin-4). Furthermore, primary neurons stimulated with oxyhemoglobin were used to simulate subarachnoid hemorrhage in vitro, and the JAK2 inhibitor AG490 was used as an intervention. The in vitro results also suggested that neuronal protection is mediated by the inhibition of JAK2 and STAT3 expression. Together, our findings indicate that the SOCS1/JAK2/STAT3 axis contributes to early brain injury after subarachnoid hemorrhage both in vitro and in vivo by inducing inflammatory responses. This study was approved by the Animal Ethics Committee of Anhui Medical University and the First Affiliated Hospital of University of Science and Technology of China (approval No. LLSC-20180202) on March 1, 2018.

12.
Front Genet ; 12: 639930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679900

RESUMO

Aiming at the limitation of the convolution kernel with a fixed receptive field and unknown prior to optimal network width in U-Net, multi-scale U-Net (MSU-Net) is proposed by us for medical image segmentation. First, multiple convolution sequence is used to extract more semantic features from the images. Second, the convolution kernel with different receptive fields is used to make features more diverse. The problem of unknown network width is alleviated by efficient integration of convolution kernel with different receptive fields. In addition, the multi-scale block is extended to other variants of the original U-Net to verify its universality. Five different medical image segmentation datasets are used to evaluate MSU-Net. A variety of imaging modalities are included in these datasets, such as electron microscopy, dermoscope, ultrasound, etc. Intersection over Union (IoU) of MSU-Net on each dataset are 0.771, 0.867, 0.708, 0.900, and 0.702, respectively. Experimental results show that MSU-Net achieves the best performance on different datasets. Our implementation is available at https://github.com/CN-zdy/MSU_Net.

13.
Acta Pharmacol Sin ; 42(1): 108-114, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32398685

RESUMO

Glioblastoma (GBM) patients have extremely poor prognoses, and currently no effective treatment available including surgery, radiation, and chemotherapy. MAPK-interacting kinases (MNK1/2) as the downstream of the MAPK-signaling pathway regulate protein synthesis in normal and tumor cells. Research has shown that targeting MNKs may be an effective strategy to treat GBM. In this study we investigated the antitumor activity of osimertinib, an FDA-approved epidermal growth factor receptor (EGFR) inhibitor, against patient-derived primary GBM cells. Using high-throughput screening approach, we screened the entire panel of FDA-approved drugs against primary cancer cells derived from glioblastoma patients, found that osimertinib (3 µM) suppressed the proliferation of a subset (10/22) of EGFR-negative GBM cells (>50% growth inhibition). We detected the gene expression difference between osimertinib-sensitive and -resistant cells, found that osimertinib-sensitive GBM cells displayed activated MAPK-signaling pathway. We further showed that osimertinib potently inhibited the MNK kinase activities with IC50 values of 324 nM and 48.6 nM, respectively, against MNK1 and MNK2 kinases; osimertinib (0.3-3 µM) dose-dependently suppressed the phosphorylation of eukaryotic translation initiation factor 4E (eIF4E). In GBM patient-derived xenografts mice, oral administration of osimertinib (40 mg· kg-1 ·d-1, for 18 days) significantly suppressed the tumor growth (TGI = 74.5%) and inhibited eIF4E phosphorylation in tumor cells. Given the fact that osimertinib could cross the blood-brain barrier and its toxicity was well tolerated in patients, our results suggest that osimertinib could be a new and effective drug candidate for the EGFR-negative GBM patients.


Assuntos
Acrilamidas/uso terapêutico , Compostos de Anilina/uso terapêutico , Antineoplásicos/uso terapêutico , Glioblastoma/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Adolescente , Adulto , Idoso , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Criança , Receptores ErbB/deficiência , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Masculino , Camundongos , Pessoa de Meia-Idade , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
14.
J Cell Mol Med ; 25(2): 925-936, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33277782

RESUMO

The enhancer of zeste homologue 2 (EZH2) is a histone H3 lysine 27 methyltransferase that promotes tumorigenesis in a variety of human malignancies by altering the expression of tumour suppressor genes. To evaluate the prognostic value of EZH2 in glioma, we analysed gene expression data and corresponding clinicopathological information from the Chinese Glioma Genome Atlas, the Cancer Genome Atlas and GTEx. Increased expression of EZH2 was significantly associated with clinicopathologic characteristics and overall survival as evaluated by univariate and multivariate Cox regression. Gene Set Enrichment Analysis revealed an association of EZH2 expression with the cell cycle, DNA replication, mismatch repair, p53 signalling and pyrimidine metabolism. We constructed a nomogram for prognosis prediction with EZH2, clinicopathologic variables and significantly correlated genes. EZH2 was demonstrated to be significantly associated with several immune checkpoints and tumour-infiltrating lymphocytes. Furthermore, the ESTIMATE and Timer Database scores indicated correlation of EZH2 expression with a more immunosuppressive microenvironment for glioblastoma than for low grade glioma. Overall, our study demonstrates that expression of EZH2 is a potential prognostic molecular marker of poor survival in glioma and identifies signalling pathways and immune checkpoints regulated by EHZ2, suggesting a direction for future application of immune therapy in glioma.


Assuntos
Neoplasias Encefálicas/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Glioma/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/imunologia , Glioma/patologia , Humanos , Imunidade , Nomogramas , Prognóstico , Transdução de Sinais/genética , Análise de Sobrevida , Microambiente Tumoral/genética
15.
Cancer Gene Ther ; 28(9): 1025-1034, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33293663

RESUMO

Recently, the role of long noncoding RNA (lncRNA) has been identified in human diseases, and we aim to explore the role of lncRNA antidifferentiation noncoding RNA (ANCR) in glioma. Expression of lncRNA ANCR, enhancer of zeste homolog 2 (EZH2), and phosphatase and tensin homolog (PTEN) in glioma tissues and cells was determined by RT-PCR or western blot assay. The correlation between expression of ANCR, EZH2, and PTEN in glioma tissues was analyzed using Pearson test. The apoptosis, transwell invasion, migration, colony formation, and proliferation assays were conducted to evaluate the influences of lncRNA ANCR depletion, EZH2 reduction, or PTEN elevation on the cell biology of glioma cells. The relationships between ANCR and EZH2, and between EZH2 and PTEN were confirmed through RIP, RNA pull-down, and chromatin immunoprecipitation assays. Our results indicated that ANCR and EZH2 were upregulated and PTEN was downregulated in glioma tissues and cell lines. ANCR expression was positively related to EZH2 expression, while PTEN expression was negatively related to ANCR/EZH2 expression. Inhibited ANCR, reduced EZH2, or elevated PTEN could reduce the ability of invasion, migration, and proliferation, and promote apoptosis of glioma cells. PTEN overexpression or EZH2 inhibition reversed the promotive role of ANCR upregulation in glioma cell growth and metastasis. Mechanistically, PTEN was upregulated in ANCR knockdown glioma cells. EZH2 interacted with ANCR in glioma cells. In conclusion, we have found that restrained ANCR could repress invasion, migration, and proliferation, as well as promote apoptosis of glioma cells through interacting with EZH2 and regulating the expression of PTEN, offering an effective therapeutic target for patients with glioma.


Assuntos
Neoplasias Encefálicas/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Glioma/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , RNA Longo não Codificante/metabolismo , Idoso , Apoptose/fisiologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Glioma/genética , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , RNA Longo não Codificante/genética
16.
Cancer Manag Res ; 12: 12439-12445, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33293869

RESUMO

PURPOSE AND OBJECTIVE: Auto planning might reduce the manual time required for the optimization and could also potentially improve the overall plan quality. The aim of this study is to demonstrate the statistical comparison of automatic (AU) and manually (MA) generated nasopharyngeal carcinoma (NPC) intensity-modulated radiation therapy (IMRT) plans. MATERIALS AND METHODS: The study included 105 nasopharyngeal carcinoma patients, admitted to our hospital. The patients underwent IMRT treatments. The clinically delivered plans were performed with Eclipse (Version 11.0) using manual optimization. The same plans were optimized successively in PinnacleTM3 (version 9.10) treatment planning system using the auto plan software package module. D95 (dose of 95% volume) and D98 (dose of 98% volume) were calculated for the targets and maximum dose (Dmax) and mean dose (Dmean) for the organ at risks (OARs); moreover, the average doses of each target and OARs for 105 patients were evaluated. RESULTS: There is no significant difference in the homogeneity of the target between AU and MA treatment plans, while a significant difference is observed for what is concerning the OARs or most of OARs in 105 patients, OAR doses were significantly reduced in AU plan. For OARs which have no significant difference between AU and MA plans are highlighted, the mean dose of OARs in AU plans was at least not higher than MA plans. CONCLUSION: Nasopharyngeal carcinoma IMRT plans made by an automatic planning tool met the clinical requirements for target prescription dose; moreover, the dose of normal tissues was lower than in MA plans. Clinical physicists' time can be saved and the influence of factors such as the lack of experience in treatment planning can be avoided.

17.
Front Neurosci ; 14: 586197, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192272

RESUMO

Multimodal medical images provide significant amounts of complementary semantic information. Therefore, multimodal medical imaging has been widely used in the segmentation of gliomas through computational neural networks. However, inputting images from different sources directly to the network does not achieve the best segmentation effect. This paper describes a convolutional neural network called F-S-Net that fuses the information from multimodal medical images and uses the semantic information contained within these images for glioma segmentation. The architecture of F-S-Net is formed by cascading two sub-networks. The first sub-network projects the multimodal medical images into the same semantic space, which ensures they have the same semantic metric. The second sub-network uses a dual encoder structure (DES) and a channel spatial attention block (CSAB) to extract more detailed information and focus on the lesion area. DES and CSAB are integrated into U-Net architectures. A multimodal glioma dataset collected by Yijishan Hospital of Wannan Medical College is used to train and evaluate the network. F-S-Net is found to achieve a dice coefficient of 0.9052 and Jaccard similarity of 0.8280, outperforming several previous segmentation methods.

18.
Pathol Res Pract ; 216(4): 152883, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32088087

RESUMO

OBJECTIVE: To investigate the role and mechanisms of HAUSP (Herpesvirus Associated Ubiquitin Specific Protease) and NANOG in pathogenesis of malignant human gliomas progression. METHODS: Lentivirus-mediated HAUSP over-expression and RNAiHAUSP mediated HAUSP down-regulation were established in the glioma cells (U87 and U251 cell lines). Firstly, Real-time qPCR, western-blot (WB) and immunofluorescence staining were performed to detect mRNA levels, protein expressions and deposition of HAUSP and NANOG in the glioma cells, respectively. Then cell proliferation, invasion, apoptosis and xenograft tumor growth in nude mice were assessed by using cell counting kit-8 (CCK-8) assay, transwell assay, flow cytometry (FCM) and Hematoxylin-Eosin (HE) staining. RESULTS: We first demonstrated HAUSP was significantly increased in lentivirus- mediated HAUSP over-expression cells compared to the Control group. HAUSP over-expression could upregulate genes involved in proliferation and invasion such as NANOG. However, the mRNA of NANOG had no significant changes. Similarly, in RNAiHAUSP mediated HAUSP down-regulation group, HAUSP were significantly decreased compared to the Control group. Simultaneously, NANOG protein were decreased significantly, which decreased the proliferation and invasion, increased the apoptosis rate of glioma cells. Finally, low expression of HAUSP could suppress xenograft tumors growth in nude mice in different periods. CONCLUSION: This study revealed that HAUSP-NANOG pathway is a key target to inhibit glioma cells proliferation, and NANOG play important role in the formation and evolution of glioma cells. The regulation of HAUSP could change the biological activity of glioma cells through regulate NANOG expression.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Proteína Homeobox Nanog/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Animais , Apoptose/fisiologia , Neoplasias Encefálicas/metabolismo , Proliferação de Células/fisiologia , Glioma/metabolismo , Xenoenxertos , Humanos , Camundongos , Camundongos Nus
19.
Neural Regen Res ; 14(6): 1013-1024, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30762013

RESUMO

The Wnt/Frizzled signaling pathway participates in many inflammation-linked diseases. However, the inflammatory response mediated by the Wnt/Frizzled signaling pathway in experimental subarachnoid hemorrhage has not been thoroughly investigated. Consequently, in this study, we examined the potential role of the Wnt/Frizzled signaling pathway in early brain injury in rat models of subarachnoid hemorrhage. Simultaneously, possible neuroprotective mechanisms were also investigated. Experimental subarachnoid hemorrhage rat models were induced by injecting autologous blood into the prechiasmatic cistern. Experiment 1 was designed to examine expression of the Wnt/Frizzled signaling pathway in early brain injury induced by subarachnoid hemorrhage. In total, 42 adult rats were divided into sham (injection of equivalent volume of saline), 6-, 12-, 24-, 48-, 72-hour, and 1-week subarachnoid hemorrhage groups. Experiment 2 was designed to examine neuroprotective mechanisms of the Wnt/Frizzled signaling pathway in early brain injury induced by subarachnoid hemorrhage. Rats were treated with recombinant human Wnt1 (rhwnt1), small interfering Wnt1 (siwnt1) RNA, and monoclonal antibody of Frizzled1 (anti-Frizzled1) at 48 hours after subarachnoid hemorrhage. Expression levels of Wnt1, Frizzled1, ß-catenin, peroxisome proliferator-activated receptor-γ, CD36, and active nuclear factor-κB were examined by western blot assay and immunofluorescence staining. Microglia type conversion and inflammatory cytokine levels in brain tissue were examined by immunofluorescence staining and enzyme-linked immunosorbent assay. Our results show that compared with the sham group, expression levels of Wnt1, Frizzled1, and ß-catenin were low and reduced to a minimum at 48 hours, gradually returning to baseline at 1 week after subarachnoid hemorrhage. rhwnt1 treatment markedly increased Wnt1 expression and alleviated subarachnoid hemorrhage-induced early brain injury (within 72 hours), including cortical cell apoptosis, brain edema, and neurobehavioral deficits, accompanied by increasing protein levels of ß-catenin, CD36, and peroxisome proliferator-activated receptor-γ and decreasing protein levels of nuclear factor-κB. Of note, rhwnt1 promoted M2-type microglia conversion and inhibited release of inflammatory cytokines (interleukin-1ß, interleukin-6, and tumor necrosis factor-α). In contrast, siwnt1 RNA and anti-Frizzled1 treatment both resulted in an opposite effect. In conclusion, the Wnt/Frizzled1 signaling pathway may participate in subarachnoid hemorrhage-induced early brain injury via inhibiting the inflammatory response, including regulating microglia type conversion and decreasing inflammatory cytokine release. The study was approved by the Animal Ethics Committee of Anhui Medical University and First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (approval No. LLSC-20180202) in May 2017.

20.
Cell Death Dis ; 10(2): 71, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683843

RESUMO

Prolonged parenchymal cell death leads to activation of fibrogenic cells and extracellular matrix accumulation and eventually liver fibrosis. Autophagy, a major catabolic process of intracellular degradation and recycling, participates in hepatic fibrosis. However, the precise role of autophagy in the pathogenesis of hepatic fibrosis is controversial. The present study aims to investigate the key role of small VCP/p97 interacting protein (SVIP) against CCl4-induced hepatic fibrosis via activating autophagy. Autophagy could be activated by SVIP in HepG2 cells, but starvation cannot increase SVIP expression in vitro and in vivo. Moreover, SVIP expression, in agreement with autophagic activity and the volume of lipid droplets, first increases and then decreases during the progression of liver fibrosis with CCl4 treatment in vivo and in vivo. Further, overexpression of SVIP can protect HepG2 cells from the toxicity of CCl4, which could be enhanced by starvation. Finally, starvation keeps SVIP and autophagy at such high levels in the rat livers that markedly delays the progress of hepatic fibrosis. Probably, the protective effect of SVIP is associated with stabilizing nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2) and transcription factor EB (TFEB). The current study provides insight into the biological role of SVIP and autophagy in regulating hepatic fibrosis, targeting SVIP might be a novel therapeutic strategy in the future.


Assuntos
Autofagia , Tetracloreto de Carbono/farmacologia , Hepatócitos/metabolismo , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Animais , Tetracloreto de Carbono/efeitos adversos , Sobrevivência Celular/genética , Modelos Animais de Doenças , Células Hep G2 , Humanos , Proteínas de Membrana/genética , Camundongos , Proteínas de Ligação a Fosfato/genética , Ratos , Ratos Sprague-Dawley , Inanição/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA