Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Angew Chem Int Ed Engl ; : e202317592, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650376

RESUMO

The highly selective hydrogenation to remove olefins is a significant refining approach for the reformate. Herein, a library of transition metal for reformate hydrogenation is tested experimentally to validate the predictive level of catalytic activity from our theoretical framework, which combines ab initio calculations and microkinetic modeling, with consideration of surface H-coverage effect on hydrogenation kinetics. The favorable H coverage of specific alloy surface under relevant hydrogenation condition, is found to be determined by its corresponding alloy composition. Besides, olefin hydrogenation rate is determined as a function of two descriptors, i.e. H coverage and binding energies of atomic hydrogen, paving the way to computationally screen on metal component in the periodic table. Evaluation of 172 bimetallic alloys based on the activity volcano map, as well as benzene hydrogenation rate, identifies prospective superior candidates and experimentally confirms that Zn3Ir1 outperforms pure Pd catalysts for the selective hydrogenation refining of reformate. The insights into H-coverage-related microkinetic modelling have enabled us to both theoretically understand experimental findings and identify novel catalysts, thus, bridging the gap between first-principle simulations and industrial applications. This work provides useful guidance for experimental catalyst design, which can be easily extended to other hydrogenation reaction.

2.
ACS Appl Mater Interfaces ; 16(13): 16309-16316, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507679

RESUMO

Constructing highly active and noble metal-free electrocatalysts is significant for the anodic oxygen evolution reaction (OER). Herein, uniform carbon-coated CoP nanospheres (CoP/C) are developed by a direct impregnation coupling phosphorization approach. Importantly, CoP/C only takes a small overpotential of 230 mV at the current density of 10 mA cm-2 and displays a Tafel slope of 56.87 mV dec-1. Furthermore, the intrinsic activity of CoP/C is 21.44 times better than that of commercial RuO2 under an overpotential of 260 mV. In situ Raman spectroscopy studies revealed that a large number of generated Co-O and Co-OH species could facilitate the *OH adsorption, effectively accelerating the reaction kinetics. Meanwhile, the carbon shell with a large number of mesoporous pores acts as the chainmail of CoP, which could improve the active surface area of the catalyst and prevent the Co sites from oxidative dissolution. This work provides a facile and effective reference for the development of highly active and stable OER catalysts.

3.
Small ; 20(16): e2306694, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38044277

RESUMO

Constructing structural defects is a promising way to enhance the catalytic activity toward the hydrogen evolution reaction (HER). However, the relationship between defect density and HER activity has rarely been discussed. In this study, a series of Pt/WOx nanocrystals are fabricated with controlled morphologies and structural defect densities using a facile one-step wet chemical method. Remarkably, compared with polygonal and star structures, the dendritic Pt/WOx (d-Pt/WOx) exhibited a richer structural defect density, including stepped surfaces and atomic defects. Notably, the d-Pt/WOx catalyst required 4 and 16 mV to reach 10 mA cm-2, and its turnover frequency (TOF) values are 11.6 and 22.8 times higher than that of Pt/C under acidic and alkaline conditions, respectively. In addition, d-Pt/WOx//IrO2 displayed a mass activity of 5158 mA mgPt -1 at 2.0 V in proton exchange membrane water electrolyzers (PEMWEs), which is significantly higher than that of the commercial Pt/C//IrO2 system. Further mechanistic studies suggested that the d-Pt/WOx exhibited reduced number of antibonding bands and the lowest dz2-band center, contributing to hydrogen adsorption and release in acidic solution. The highest dz2-band center of d-Pt/WOx facilitated the adsorption of hydrogen from water molecules and water dissociation in alkaline medium. This work emphasizes the key role of the defect density in improving the HER activity of electrocatalysts.

4.
JACS Au ; 3(11): 3031-3044, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38034973

RESUMO

Recently, a lot of attention has been dedicated to double- or triple-atom catalysts (DACs/TACs) as promising alternatives to platinum-based catalysts for the oxygen reduction reaction (ORR) in fuel cell applications. However, the ORR activity of DACs/TACs is usually theoretically understood or predicted using the single-site association pathway (O2 → OOH* → O* → OH* → H2O) proposed from Pt-based alloy and single-atom catalysts (SACs). Here, we investigate the ORR process on a series of graphene-supported Fe-Co DACs/TACs by means of first-principles calculation and an electrode microkinetic model. We propose that a dual channel for electron acceptance-backdonation on adjacent metal sites of DACs/TACs efficiently promotes O-O bond breakage compared with SACs, which makes ORR switch to proceed through dual-site dissociation pathways (O2 → O* + OH* → 2OH* → OH* → H2O) from the traditional single-site association pathway. Following this revised ORR network, a complete reaction phase diagram of DACs/TACs is established, where the preferential ORR pathways and activity can be described by a three-dimensional volcano plot spanned by the adsorption free energies of ΔG(O*) and ΔG(OH*). Besides, the kinetics preferability of dual-site dissociation pathways is also appropriate for other graphene- or oxide-supported DACs/TACs. The contribution of dual-site dissociation pathways, rather than the traditional single-site association pathway, makes the theoretical ORR activity of DACs/TACs in better agreement with available experiments, rationalizing the superior kinetic behavior of DACs/TACs to that of SACs. This work reveals the origin of ORR pathway switching from SACs to DACs/TACs, which broadens the ideas and lays the theoretical foundation for the rational design of DACs/TACs and may also be heuristic for other reactions catalyzed by DACs/TACs.

5.
ACS Appl Mater Interfaces ; 15(38): 44827-44838, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37713509

RESUMO

Developing bifunctional electrocatalysts with low-content noble metals and high activity and stability is crucial for water splitting. Herein, we reported a novel Ru doped FeP4/Fe2PO5 heterogeneous interface catalyst (Ru@FeP4/Fe2PO5) for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) by heat treatment coupling electrodeposition strategy. Experiments disclosed that Ru@FeP4/Fe2PO5 proclaimed excellent catalytic activity for the OER (249 mV@100 mA cm-2) and HER (49 mV@10 mA cm-2) in a 1 M KOH environment. More importantly, the mass activity and turnover frequency of Ru@FeP4/Fe2PO5 were 117 and 108 times higher than that of commercial RuO2 at an overpotential of 300 mV during the OER, respectively. In addition, the assembled Ru@FeP4/Fe2PO5 || Ru@FeP4/Fe2PO5 system could retain superior durability in a two-electrode system for 134 h at 300 mA cm-2. Further mechanism studies revealed that Ru atoms in Ru@FeP4/Fe2PO5 act in a key role for the excellent activity during water splitting because the electronic structure of Ru sites could be optimized by the interaction between Ru and Fe atoms at the interface to strengthen the adsorption of reaction intermediates. Besides, the introduction of Ru atoms could also enhance the charge transfer, which effectually accelerates the reaction kinetics. The strategy of anchoring Ru atom on novel heterostructure provides a promising path to boost the overall activity of electrocatalysts for water splitting.

6.
Adv Mater ; 35(46): e2303905, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37535390

RESUMO

The atomic-local environment of catalytically active sites plays an important role in tuning the activity of carbon-based metal-free electrocatalysts (C-MFECs). However, the rational regulation of the environment is always impeded by synthetic limitations and insufficient understanding of the formation mechanism of the catalytic sites. Herein, the possible cleavage mechanism of carbon nanotubes (CNTs) through the crossing points during ball-milling is proposed, resulting in abundant CNT tips that are more susceptible to be modified by heteroatoms, achieving precise modulation of the atomic environment at the tips. The obtained CNTs with N,S-rich tips (N,S-TCNTs) exhibit a wide potential window of 0.59 V along with H2 O2 selectivity for over 90.0%. Even using air as the O2 source, the flow cell system with N,S-TCNTs catalyst attains high H2 O2 productivity up to 30.37 mol gcat. -1  h-1 @350 mA cm-2 , superior to most reported C-MFECs. From a practical point of view, a solid electrolyzer based on N,S-TCNTs is further employed to realize the in-situ continuous generation of pure H2 O2 solution with high productivity (up to 4.35 mmol cm-2  h-1 @300 mA cm-2 ; over 300 h). The CNTs with functionalized tips hold great promise for practical applications, even beyond H2 O2 generation.

7.
J Am Chem Soc ; 145(20): 11110-11120, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37191364

RESUMO

Improving the product selectivity meanwhile restraining deep oxidation still remains a great challenge over the supported Pd-based catalysts. Herein, we demonstrate a universal strategy where the surface strong oxidative Pd sites are partially covered by the transition metal (e. g., Cu, Co, Ni, and Mn) oxide through thermal treatment of alloys. It could effectively inhibit the deep oxidation of isopropanol and achieve the ultrahigh selectivity (>98%) to the target product acetone in a wide temperature range of 50-200 °C, even at 150-200 °C with almost 100% isopropanol conversion over PdCu1.2/Al2O3, while an obvious decline in acetone selectivity is observed from 150 °C over Pd/Al2O3. Furthermore, it greatly improves the low-temperature catalytic activity (acetone formation rate at 110 °C over PdCu1.2/Al2O3, 34.1 times higher than that over Pd/Al2O3). The decrease of surface Pd site exposure weakens the cleavage for the C-C bond, while the introduction of proper CuO shifts the d-band center (εd) of Pd upward and strengthens the adsorption and activation of reactants, providing more reactive oxygen species, especially the key super oxygen species (O2-) for selective oxidation, and significantly reducing the barrier of O-H and ß-C-H bond scission. The molecular-level understanding of the C-H and C-C bond scission mechanism will guide the regulation of strong oxidative noble metal sites with relatively inert metal oxide for the other selective catalytic oxidation reactions.

8.
Chem Commun (Camb) ; 59(43): 6529-6532, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37158790

RESUMO

The composition effect of PdPt alloys on preferential hydrogenation of C6 olefins over benzene is studied by combining density functional theory calculations and microkinetic modeling. A trade-off between activity and selectivity is found with increasing Pt component. Pd3Pt1 is identified with high selectivity (low aromatic depletion), while Pd1Pt1 and Pd1Pt3 are more active for olefin hydrogenation. The PdPt alloys present superior sulfur tolerance compared to Pd.

9.
Comput Biol Med ; 159: 106898, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37062253

RESUMO

Based on the generalized Darcy model, here we develop a linear one-dimensional (1D) composite model to predict the effects of the inserted balloon under REBOA operations on the dynamic characteristics of blood flow in flexible arterial networks. We first consider the effect of the decrease of cardiac output under different degrees of blood loss through employing the fourth-order lumped parameter model of cardiovascular system. Then, the effect of the inserted balloon is included by developing the relation between flow resistance and occlusion ratio with the neural network approach. Finally, the accuracy of the developed 1D composite model for REBOA operations, which can be solved analytically in the frequency domain, is verified by comparing to computational fluid dynamics (CFD) simulations. It is demonstrated that the 1D model is able to reproduce main features of the systemic circulation under balloon occlusion of the aorta during REBOA surgery. The 1D composite model could substantially reduce the computational time, which makes it possible to give the instant prediction of the working parameters during RABOA operations.


Assuntos
Oclusão com Balão , Procedimentos Endovasculares , Humanos , Ressuscitação/métodos , Hemodinâmica/fisiologia , Hemorragia , Aorta/cirurgia , Fluxo Pulsátil , Oclusão com Balão/métodos , Procedimentos Endovasculares/métodos
10.
Small ; 19(33): e2301613, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36967546

RESUMO

Fabricating heterogeneous interfaces is an effective approach to improve the intrinsic activity of noble-metal-free catalysts for water splitting. Herein, 3D copper-nickel selenide (CuNi@NiSe) nanodendrites with abundant heterointerfaces are constructed by a precise multi-step wet chemistry method. Notably, CuNi@NiSe only needs 293 and 41 mV at 10 mA cm-2 for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. Moreover, the assembled CuNi@NiSe system just requires 2.2 V at 1000 mA cm-2 in anion exchange membrane (AEM) electrolyzer, which is 2.0 times better than Pt/C//IrO2 . Mechanism studies reveal Cu defects on the Cu2-x Se surface boost the electron transfer between Cu atoms and Se atoms of Ni3 Se4 via Cu2-x Se/Ni3 Se4 interface, largely lowering the reaction barrier of rate-determining step for HER. Besides, the intrinsic activity of Ni atoms for in situ generated NiOOH is largely enhanced during OER because of the electron-modulating effect of Se atoms at Ni3 Se4 /NiOOH interface. The unique 3D structure also promotes the mass transfer during catalysis process. This work emphasizes the essential role of interfacial engineering for practical water splitting.

11.
Faraday Discuss ; 242(0): 418-428, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36169011

RESUMO

Alloying is an effective approach to improve the catalysis performance of Pd-based catalysts for the selective hydrogenation of diolefins towards monoolefines. Herein, PdAgCu ternary nanoalloy catalysts were synthesised by a stepwise impregnation method for isoprene selective hydrogenation. The addition of a moderate amount of Ag and Cu to Pd significantly enhances the isoamylene selectivity in the isoprene hydrogenation, and decreases the non-desired over-hydrogenation. In addition, the loading molar ratio of PdAgCu with 3 : 2 : 3 as the optimal ternary nanoalloy composition maximizes the isoprene conversion (98%) and the monoolefins yield (92%). The surface structure of the catalyst was probed using H2-TPR, TEM, XRD, and XPS characterization methods, and it was confirmed that the surface Pd composition ratio between the metallic and oxidized states shows significant effects on the monoolefines yield. This work demonstrates the advantages of PdAgCu ternary nanoalloy catalysts for isoprene selective hydrogenation, which also provides guidelines for the development of other Pd-based ternary nanoalloys for diolefins selective hydrogenation.

12.
Angew Chem Int Ed Engl ; 62(9): e202214259, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36495017

RESUMO

The construction of highly active, durable, and cost-effective catalysts is urgently needed for green hydrogen production. Herein, catalysts consisting of high-density Pt (24 atoms nm-2 ) and Ir (32 atoms nm-2 ) single atoms anchored on Co(OH)2 were constructed by a facile one-step approach. Remarkably, Pt1 /Co(OH)2 and Ir1 /Co(OH)2 only required 4 and 178 mV at 10 mA cm-2 for hydrogen evolution reaction and oxygen evolution reaction, respectively. Moreover, the assembled Pt1 /Co(OH)2 //Ir1 /Co(OH)2 system showed mass activity of 4.9 A mgnoble metal -1 at 2.0 V in an alkaline water electrolyzer, which is 316.1 times higher than that of Pt/C//IrO2 . Mechanistic studies revealed that reconstructed Ir-O6 single atoms and remodeled Pt triple-atom sites enhanced the occupancy of Ir-O bonding orbitals and improved the occupation of Pt-H antibonding orbital, respectively, contributing to the formation of the O-O bond and the desorption of hydrogen. This one-step approach was also generalized to fabricate other 20 single-atom catalysts.

14.
J Colloid Interface Sci ; 629(Pt A): 53-62, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36049329

RESUMO

Regulating catalyst composition is one of the efficient approaches to boost intrinsic activity of electrocatalysts for water splitting. Herein, four different hollow porous platinum-copper (PtCu) nanotubes (NTs) with controllable compositions were precisely fabricated by a facile wet-chemistry method. Importantly, Pt5Cu2 NTs display the best hydrogen evolution reaction (HER) performance in all pH conditions compared to other samples, which just require overpotentials of 34 ± 2, 32 ± 2, and 284 ± 2 mV at 10 mA cm-2 in basic, acidic, and neutral solutions, respectively. Moreover, Pt5Cu2 NTs also exhibit outstanding stability and corrosion resistance in all pH ranges. Then, mechanism analysis reveals that the electronic structure of Pt sites is regulated by changing the ratio of Pt and Cu, which directly optimizes the binding energy of reaction intermediates and promotes electron transfer during the HER process. In addition, a porous nanotube structure with countless nanoparticles on the surface provides a large number of active sites, enhancing the adsorption/desorption of reactants. This work emphasizes the importance of catalyst composition and provides a highly active potential HER catalyst for practical hydrogen production.

15.
Rev Sci Instrum ; 93(11): 114101, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461472

RESUMO

Ag-based catalysts have been used in many practical reactions, such as p-nitrophenol reduction, due to the advantages of low cost and excellent activity. In order to facilitate the development of Ag-based catalysts, it may be helpful to use automated equipment for experiments. In this study, a system for the high-throughput synthesis of Ag-based catalysts was developed based on a facile impregnation method. Notably, the system automates the batch synthesis of Ag-based catalysts by setting the catalyst formulation in a dedicated software. Moreover, the software used employs the ant colony algorithm to optimize the synthesis path and improve the synthesis efficiency. The catalysts obtained from the high-throughput system are found to be similar to the manually prepared samples based on comparison of characterization results. In addition, experiments also reveal that this high-throughput system is capable of achieving high-throughput synthesis of Ag-based catalysts at the gram level. The synthesis of Pt-Ag bimetallic catalysts shows that this high-throughput system can be effectively used for exploratory experiments. This work paves the way for a high-throughput technique to synthesize Ag-based catalysts in a short period of time, which could be extended to the preparation of other catalyst systems. Moreover, the high-throughput synthesis system of Ag-based catalysts provides a feasible prerequisite for subsequent high-throughput characterization, which is a significant advancement in the development of industrial catalysts.

16.
Nat Commun ; 13(1): 7164, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418895

RESUMO

Nanotechnology enlightens promising antibacterial strategies while the complex in vivo infection environment poses a great challenge to the rational design of nanoplatforms for safe and effective anti-infective therapy. Herein, a biomimetic nanoplatform (EV-Pd-Pt) integrating electrodynamic Pd-Pt nanosheets and natural ginger-derived extracellular vesicles (EVs) is proposed. The introduction of ginger-derived EVs greatly endows EV-Pd-Pt with prolonged blood circulation without immune clearance, as well as accumulation at infection sites. More interestingly, EV-Pd-Pt can enter the interior of bacteria in an EV lipid-dependent manner. At the same time, reactive oxygen species are sustainably generated in situ to overcome the limitations of their short lifetime and diffusion distance. Notably, EV-Pd-Pt nanoparticle-mediated electrodynamic and photothermal therapy exhibit synergistic effects. Furthermore, the desirable biocompatibility and biosafety of the proposed nanoplatform guarantee the feasibility of in vivo applications. This proof-of-concept work holds significant promise for developing biomimetic nanoparticles by exploiting their intrinsic properties for synergistic anti-infective therapy.


Assuntos
Vesículas Extracelulares , Nanopartículas , Zingiber officinale , Biomimética
17.
Nanoscale ; 14(41): 15422-15431, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36218353

RESUMO

Nitrate electrochemical reduction to ammonia (NO3RR) catalyzed by single-atom catalysts (SACs) is an attractive and efficient way for solving the problem of nitrate pollution in water and obtaining valuable product ammonia through low temperature synthesis. It is well known that the pH conditions can be regulated to tune the performance of NO3RR, however, there have been few studies aimed at gaining theoretical insight into the origin of pH-dependent catalytic performance among SACs. Herein, taking 3d-transition metal (Fe, Co, Ni and Mn) single-atoms supported on diverse anchor sites of MoS2 as an example (SA-MoS2), we explore the activity and selectivity for NO3RR towards ammonia (NH3 and NH4+) under different pH conditions by density functional theory calculations. It is found that priority reaction pathways, the potential determining step and limiting potentials of SA-MoS2 exhibit pH-dependent characteristics, which can be described by a contour map of catalytic reactivity, spanned by adsorption free energies (GNO* and GNH2*), and further determined by local coordination environment and electronic states of active sites. Our three-step screening method reveals that the Co single-atom adsorbed MoS2 edge catalyst is the most promising catalyst among the studied SA-MoS2 because of its low limiting potential (-0.3-0.4 V, RHE), excellent selectivity in the competition with the hydrogen evolution reaction (HER), as well as stability against aggregation and electrochemical dissolution across the full pH range. This work demonstrates a theoretical insight into the pH-dependent mechanism of supported SA catalyzed NO3RR, which proposes a screening strategy for finding new SACs, and provides motivation for further experimental exploration.

18.
Nat Commun ; 13(1): 5843, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195616

RESUMO

To date, the effect of oxidation state on activity remains controversial in whether higher or lower oxidation states benefit the enhancement of catalytic activity. Herein, we discover a volcanic relationship between oxidation state and hydrogen evolution reaction activity based on Os single-atom catalysts. Firstly, a series of Os SACs with oxidation states ranging from + 0.9 to + 2.9 are synthesized via modifying the coordination environments, including Os-N3S1, Os-N4, Os-S6, Os-C3, and Os-C4S2. A volcano-type relation between oxidation states and hydrogen evolution activity emerge with a summit at a moderate experimental oxidation state of + 1.3 (Os-N3S1). Mechanism studies illustrate that with increasing oxidation states, the adsorption of H atoms on Os is strengthened due to increased energy level and decreased occupancy of anti-bonding states of Os-H bond until the anti-bonding states become empty. Further increasing the oxidation states weakens hydrogen adsorption because of the decreased occupancy of Os-H bonding states. In this work, we emphasize the essential role of oxidation state in manipulating activity, which offers insightful guidance for the rational design of single-atom catalysts.

19.
iScience ; 25(6): 104367, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35620439

RESUMO

In recent years, single-atom catalysts (SACs) with unique electronic structure and coordination environment have attracted much attention due to its maximum atomic efficiency in the catalysis fields. However, it is still a great challenge to rationally regulate the coordination environments of SACs and improve the loading of metal atoms for SACs during catalysis progress. Generally, carbon-based materials with excellent electrical conductivity and large specific surface area are widely used as catalyst supports to stabilize metal atoms. Meanwhile, carbon-based material-supported SACs have also been extensively studied and applied in various energy conversion reactions, such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), and nitrogen reduction reaction (NRR). Herein, rational synthesis methods and advanced characterization techniques were introduced and summarized in this review. Then, the theoretical design strategies and construction methods for carbon-based material-supported SACs in electrocatalysis applications were fully discussed, which are of great significance for guiding the coordination regulation and improving the loading of SACs. In the end, the challenges and future perspectives of SACs were proposed, which could largely contribute to the development of single atom catalysts at the turning point.

20.
Angew Chem Int Ed Engl ; 61(27): e202203827, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35419926

RESUMO

The controlled oxidation of alcohols to the corresponding ketones or aldehydes via selective cleavage of the ß-C-H bond of alcohols under mild conditions still remains a significant challenge. Although the metal/oxide interface is highly active and selective, the interfacial sites fall far behind the demand, due to the large and thick support. Herein, we successfully develop a unique Au-CuO Janus structure (average particle size=3.8 nm) with an ultrathin CuO layer (0.5 nm thickness) via a bimetal in situ activation and separation strategy. The resulting Au-CuO interfacial sites prominently enhance isopropanol adsorption and decrease the energy barrier of ß-C-H bond scission from 1.44 to 0.01 eV due to the strong affinity between the O atom of CuO and the H atom of isopropanol, compared with Au sites alone, thereby achieving ultrahigh acetone selectivity (99.3 %) over 1.1 wt % AuCu0.75 /Al2 O3 at 100 °C and atmospheric pressure with 97.5 % isopropanol conversion. Furthermore, Au-CuO Janus structures supported on SiO2 , TiO2 or CeO2 exhibit remarkable catalytic performance, and great promotion in activity and acetone selectivity is achieved as well for other reducible oxides derived from Fe, Co, Ni and Mn. This study should help to develop strategies for maximized interfacial site construction and structure optimization for efficient ß-C-H bond activation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA