Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
bioRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37732198

RESUMO

Current strategies to understand the molecular basis of Marek's disease virus (MDV) virulence primarily consist of cataloguing divergent nucleotides between strains with different phenotypes. However, each MDV strain is typically represented by a single consensus genome despite the confirmed existence of mixed viral populations. To assess the reliability of single-consensus interstrain genomic comparisons, we obtained two additional consensus genomes of vaccine strain CVI988 (Rispens) and two additional consensus genomes of the very virulent strain Md5 by sequencing viral stocks and cultured field isolates. In conjunction with the published genomes of CVI988 and Md5, this allowed us to perform 3-way comparisons between consensus genomes of the same strain. We found that consensus genomes of CVI988 can vary in as many as 236 positions involving 13 open reading frames (ORFs). In contrast, we found that Md5 genomes varied only in 11 positions involving a single ORF. Phylogenomic analyses showed all three Md5 consensus genomes clustered closely together, while also showing that CVI988 GenBank.BAC diverged from CVI988 Pirbright.lab and CVI988 USDA.PA.field . Comparison of CVI988 consensus genomes revealed 19 SNPs in the unique regions of CVI988 GenBank.BAC that were not present in either CVI988 Pirbright.lab or CVI988 USDA.PA.field . Finally, we evaluated the genomic heterogeneity of CVI988 and Md5 populations by identifying positions with >2% read support for alternative alleles in two ultra-deeply sequenced samples. We were able to confirm that both populations of CVI988 and Md5 were mixed, exhibiting a total of 29 and 27 high-confidence minor variant positions, respectively. We did not find any evidence of minor variants in the positions corresponding to the 19 SNPs in the unique regions of CVI988 GenBank.BAC . Taken together, our findings confirm that consensus genomes of the same strain of MDV can vary and suggest that multiple consensus genomes per strain are needed in order to maximize the accuracy of interstrain genomic comparisons.

2.
Viruses ; 15(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005939

RESUMO

Marek's disease (MD) is a highly infectious lymphoproliferative disease in chickens with a significant economic impact. Mardivirus gallidalpha 2, also known as Marek's disease virus (MDV), is the causative pathogen and has been categorized based on its virulence rank into four pathotypes: mild (m), virulent (v), very virulent (vv), and very virulent plus (vv+). A prior comparative genomics study suggested that several single-nucleotide polymorphisms (SNPs) and genes in the MDV genome are associated with virulence, including nonsynonymous (ns) SNPs in eight open reading frames (ORF): UL22, UL36, UL37, UL41, UL43, R-LORF8, R-LORF7, and ICP4. To validate the contribution of these nsSNPs to virulence, the vv+MDV strain 686 genome was modified by replacing nucleotides with those observed in the vMDV strains. Pathogenicity studies indicated that these substitutions reduced the MD incidence and increased the survival of challenged birds. Furthermore, using the best-fit pathotyping method to rank the virulence, the modified vv+MDV 686 viruses resulted in a pathotype similar to the vvMDV Md5 strain. Thus, these results support our hypothesis that SNPs in one or more of these ORFs are associated with virulence but, as a group, are not sufficient to result in a vMDV pathotype, suggesting that there are additional variants in the MDV genome associated with virulence, which is not surprising given this complex phenotype and our previous finding of additional variants and SNPs associated with virulence.


Assuntos
Herpesvirus Galináceo 2 , Mardivirus , Doença de Marek , Animais , Virulência/genética , Galinhas , Herpesvirus Galináceo 2/genética , Mardivirus/genética
3.
BMC Biol ; 21(1): 267, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993882

RESUMO

BACKGROUND: The red junglefowl, the wild outgroup of domestic chickens, has historically served as a reference for genomic studies of domestic chickens. These studies have provided insight into the etiology of traits of commercial importance. However, the use of a single reference genome does not capture diversity present among modern breeds, many of which have accumulated molecular changes due to drift and selection. While reference-based resequencing is well-suited to cataloging simple variants such as single-nucleotide changes and short insertions and deletions, it is mostly inadequate to discover more complex structural variation in the genome. METHODS: We present a pangenome for the domestic chicken consisting of thirty assemblies of chickens from different breeds and research lines. RESULTS: We demonstrate how this pangenome can be used to catalog structural variants present in modern breeds and untangle complex nested variation. We show that alignment of short reads from 100 diverse wild and domestic chickens to this pangenome reduces reference bias by 38%, which affects downstream genotyping results. This approach also allows for the accurate genotyping of a large and complex pair of structural variants at the K feathering locus using short reads, which would not be possible using a linear reference. CONCLUSIONS: We expect that this new paradigm of genomic reference will allow better pinpointing of exact mutations responsible for specific phenotypes, which will in turn be necessary for breeding chickens that meet new sustainability criteria and are resilient to quickly evolving pathogen threats.


Assuntos
Galinhas , Genoma , Animais , Galinhas/genética , Genótipo , Análise de Sequência de DNA , Genômica
4.
Sci Adv ; 9(18): eade1204, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37134160

RESUMO

A comprehensive characterization of regulatory elements in the chicken genome across tissues will have substantial impacts on both fundamental and applied research. Here, we systematically identified and characterized regulatory elements in the chicken genome by integrating 377 genome-wide sequencing datasets from 23 adult tissues. In total, we annotated 1.57 million regulatory elements, representing 15 distinct chromatin states, and predicted about 1.2 million enhancer-gene pairs and 7662 super-enhancers. This functional annotation of the chicken genome should have wide utility on identifying regulatory elements accounting for gene regulation underlying domestication, selection, and complex trait regulation, which we explored. In short, this comprehensive atlas of regulatory elements provides the scientific community with a valuable resource for chicken genetics and genomics.


Assuntos
Galinhas , Sequências Reguladoras de Ácido Nucleico , Animais , Galinhas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Genômica , Cromatina , Genoma , Elementos Facilitadores Genéticos
5.
Sci Rep ; 13(1): 5355, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005445

RESUMO

Genetically resistant or susceptible chickens to Marek's disease (MD) have been widely used models to identify the molecular determinants of these phenotypes. However, these prior studies lacked the basic identification and understanding of immune cell types that could be translated toward improved MD control. To gain insights into specific immune cell types and their responses to Marek's disease virus (MDV) infection, we used single-cell RNA sequencing (scRNAseq) on splenic cells from MD resistant and susceptible birds. In total, 14,378 cells formed clusters that identified various immune cell types. Lymphocytes, specifically T cell subtypes, were the most abundant with significant proportional changes in some subtypes upon infection. The largest number of differentially expressed genes (DEG) response was seen in granulocytes, while macrophage DEGs differed in directionality by subtype and line. Among the most DEG in almost all immune cell types were granzyme and granulysin, both associated with cell-perforating processes. Protein interactive network analyses revealed multiple overlapping canonical pathways within both lymphoid and myeloid cell lineages. This initial estimation of the chicken immune cell type landscape and its accompanying response will greatly aid efforts in identifying specific cell types and improving our knowledge of host response to viral infection.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , Animais , Galinhas/genética , Suscetibilidade a Doenças , Baço/metabolismo
6.
Viruses ; 15(3)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36992316

RESUMO

Marek's disease (MD) is a lymphoproliferative disease of chickens induced by Marek's disease virus (MDV), an oncogenic α-herpesvirus. MDV has increased in virulence, prompting continued efforts in both improved vaccines and enhanced genetic resistance. Model pairs of genetically MD-resistant and MD-susceptible chickens that were either MHC-matched or MHC-congenic allowed characterization of T cell receptor (TCR) repertoires associated with MDV infection. MD-resistant chickens showed higher usage of Vß-1 TCRs than susceptible chickens in both the CD8 and CD4 subsets in the MHC-matched model, and in the CD8 subset only in the MHC-congenic model, with a shift towards Vß-1+ CD8 cells during MDV infection. Long and short read sequencing identified divergent TCRß loci between MHC-matched MD-resistant and MD-susceptible chickens, with MD-resistant chickens having more TCR Vß1 genes. TCR Vß1 CDR1 haplotype usage in MD-resistant x MD-susceptible F1 birds by RNAseq indicated that the most commonly used CDR1 variant was unique to the MD-susceptible line, suggesting that selection for MD resistance in the MHC-matched model optimized the TCR repertoire away from dominant recognition of one or more B2 haplotype MHC molecules. Finally, TCR downregulation during MDV infection in the MHC-matched model was strongest in the MD-susceptible line, and MDV reactivation downregulated TCR expression in a tumor cell line.


Assuntos
Resistência à Doença , Herpesvirus Galináceo 2 , Doença de Marek , Receptores de Antígenos de Linfócitos T alfa-beta , Animais , Linfócitos T CD8-Positivos , Galinhas , Doença de Marek/genética , Doença de Marek/imunologia , Resistência à Doença/genética
7.
Virus Evol ; 8(2): veac099, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405341

RESUMO

Evolution relies on the availability of genetic diversity for fitness-based selection. However, most deoxyribonucleic acid (DNA) viruses employ DNA polymerases (Pol) capable of exonucleolytic proofreading to limit mutation rates during DNA replication. The relative genetic stability produced by high-fidelity genome replication can make studying DNA virus adaptation and evolution an intensive endeavor, especially in slowly replicating viruses. Here, we present a proofreading-impaired Pol mutant (Y547S) of Marek's disease virus that exhibits a hypermutator phenotype while maintaining unimpaired growth in vitro and wild-type (WT)-like pathogenicity in vivo. At the same time, mutation frequencies observed in Y547S virus populations are 2-5-fold higher compared to the parental WT virus. We find that Y547S adapts faster to growth in originally non-permissive cells, evades pressure conferred by antiviral inhibitors more efficiently, and is more easily attenuated by serial passage in cultured cells compared to WT. Our results suggest that hypermutator viruses can serve as a tool to accelerate evolutionary processes and help identify key genetic changes required for adaptation to novel host cells and resistance to antiviral therapy. Similarly, the rapid attenuation achieved through adaptation of hypermutators to growth in cell culture enables identification of genetic changes underlying attenuation and virulence, knowledge that could practically exploited, e.g. in the rational design of vaccines.

8.
Front Genet ; 13: 997460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246588

RESUMO

To identify and annotate transcript isoforms in the chicken genome, we generated Nanopore long-read sequencing data from 68 samples that encompassed 19 diverse tissues collected from experimental adult male and female White Leghorn chickens. More than 23.8 million reads with mean read length of 790 bases and average quality of 18.2 were generated. The annotation and subsequent filtering resulted in the identification of 55,382 transcripts at 40,547 loci with mean length of 1,700 bases. We predicted 30,967 coding transcripts at 19,461 loci, and 16,495 lncRNA transcripts at 15,512 loci. Compared to existing reference annotations, we found ∼52% of annotated transcripts could be partially or fully matched while ∼47% were novel. Seventy percent of novel transcripts were potentially transcribed from lncRNA loci. Based on our annotation, we quantified transcript expression across tissues and found two brain tissues (i.e., cerebellum and cortex) expressed the highest number of transcripts and loci. Furthermore, ∼22% of the transcripts displayed tissue specificity with the reproductive tissues (i.e., testis and ovary) exhibiting the most tissue-specific transcripts. Despite our wide sampling, ∼20% of Ensembl reference loci were not detected. This suggests that deeper sequencing and additional samples that include different breeds, cell types, developmental stages, and physiological conditions, are needed to fully annotate the chicken genome. The application of Nanopore sequencing in this study demonstrates the usefulness of long-read data in discovering additional novel loci (e.g., lncRNA loci) and resolving complex transcripts (e.g., the longest transcript for the TTN locus).

9.
Microorganisms ; 10(2)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208856

RESUMO

Marek's disease virus (MDV) is the causative agent for Marek's disease (MD), which is characterized by T-cell lymphomas in chickens. While the viral Meq oncogene is necessary for transformation, it is insufficient, as not every bird infected with virulent MDV goes on to develop a gross tumor. Thus, we postulated that the chicken genome contains cancer driver genes; i.e., ones with somatic mutations that promote tumors, as is the case for most human cancers. To test this hypothesis, MD tumors and matching control tissues were sequenced. Using a custom bioinformatics pipeline, 9 of the 22 tumors analyzed contained one or more somatic mutation in Ikaros (IKFZ1), a transcription factor that acts as the master regulator of lymphocyte development. The mutations found were in key Zn-finger DNA-binding domains that also commonly occur in human cancers such as B-cell acute lymphoblastic leukemia (B-ALL). To validate that IKFZ1 was a cancer driver gene, recombinant MDVs that expressed either wild-type or a mutated Ikaros allele were used to infect chickens. As predicted, birds infected with MDV expressing the mutant Ikaros allele had high tumor incidences (~90%), while there were only a few minute tumors (~12%) produced in birds infected with the virus expressing wild-type Ikaros. Thus, in addition to Meq, key somatic mutations in Ikaros or other potential cancer driver genes in the chicken genome are necessary for MDV to induce lymphomas.

10.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042807

RESUMO

Genomics encompasses the entire tree of life, both extinct and extant, and the evolutionary processes that shape this diversity. To date, genomic research has focused on humans, a small number of agricultural species, and established laboratory models. Fewer than 18,000 of ∼2,000,000 eukaryotic species (<1%) have a representative genome sequence in GenBank, and only a fraction of these have ancillary information on genome structure, genetic variation, gene expression, epigenetic modifications, and population diversity. This imbalance reflects a perception that human studies are paramount in disease research. Yet understanding how genomes work, and how genetic variation shapes phenotypes, requires a broad view that embraces the vast diversity of life. We have the technology to collect massive and exquisitely detailed datasets about the world, but expertise is siloed into distinct fields. A new approach, integrating comparative genomics with cell and evolutionary biology, ecology, archaeology, anthropology, and conservation biology, is essential for understanding and protecting ourselves and our world. Here, we describe potential for scientific discovery when comparative genomics works in close collaboration with a broad range of fields as well as the technical, scientific, and social constraints that must be addressed.


Assuntos
Biodiversidade , Evolução Biológica , Genômica/métodos , Animais , Evolução Molecular , Variação Genética/genética , Genoma/genética , Genômica/tendências , Humanos , Filogenia
13.
Genes (Basel) ; 12(10)2021 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-34681024

RESUMO

The avian α-herpesvirus known as Marek's disease virus (MDV) linearly integrates its genomic DNA into host telomeres during infection. The resulting disease, Marek's disease (MD), is characterized by virally-induced lymphomas with high mortality. The temporal dynamics of MDV-positive (MDV+) transformed cells and expansion of MD lymphomas remain targets for further understanding. It also remains to be determined whether specific host chromosomal sites of MDV telomere integration confer an advantage to MDV-transformed cells during tumorigenesis. We applied MDV-specific fluorescence in situ hybridization (MDV FISH) to investigate virus-host cytogenomic interactions within and among a total of 37 gonad lymphomas and neoplastic splenic samples in birds infected with virulent MDV. We also determined single-cell, chromosome-specific MDV integration profiles within and among transformed tissue samples, including multiple samples from the same bird. Most mitotically-dividing cells within neoplastic samples had the cytogenomic phenotype of 'MDV telomere-integrated only', and tissue-specific, temporal changes in phenotype frequencies were detected. Transformed cell populations composing gonad lymphomas exhibited significantly lower diversity, in terms of heterogeneity of MDV integration profiles, at the latest stages of tumorigenesis (>50 days post-infection (dpi)). We further report high interindividual and lower intraindividual variation in MDV integration profiles of lymphoma cells. There was no evidence of integration hotspots into a specific host chromosome(s). Collectively, our data suggests that very few transformed MDV+ T cell populations present earlier in MDV-induced lymphomas (32-50 dpi), survive, and expand to become the dominant clonal population in more advanced MD lymphomas (51-62 dpi) and establish metastatic lymphomas.


Assuntos
Herpesvirus Galináceo 2/genética , Linfoma/genética , Doença de Marek/genética , Doenças das Aves Domésticas/genética , Animais , Carcinogênese/genética , Galinhas/genética , Galinhas/virologia , Herpesvirus Galináceo 2/patogenicidade , Interações Hospedeiro-Patógeno/genética , Hibridização in Situ Fluorescente , Linfoma/etiologia , Linfoma/patologia , Linfoma/virologia , Doença de Marek/complicações , Doença de Marek/patologia , Doença de Marek/virologia , Doenças das Aves Domésticas/virologia , Neoplasias Esplênicas/etiologia , Neoplasias Esplênicas/genética , Neoplasias Esplênicas/patologia , Linfócitos T/virologia , Telômero/genética , Telômero/virologia , Integração Viral/genética
14.
Front Genet ; 12: 666265, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234809

RESUMO

In order to generate an atlas of the functional elements driving genome expression in domestic animals, the Functional Annotation of Animal Genome (FAANG) strategy was to sample many tissues from a few animals of different species, sexes, ages, and production stages. This article presents the collection of tissue samples for four species produced by two pilot projects, at INRAE (National Research Institute for Agriculture, Food and Environment) and the University of California, Davis. There were three mammals (cattle, goat, and pig) and one bird (chicken). It describes the metadata characterizing these reference sets (1) for animals with origin and selection history, physiological status, and environmental conditions; (2) for samples with collection site and tissue/cell processing; (3) for quality control; and (4) for storage and further distribution. Three sets are identified: set 1 comprises tissues for which collection can be standardized and for which representative aliquots can be easily distributed (liver, spleen, lung, heart, fat depot, skin, muscle, and peripheral blood mononuclear cells); set 2 comprises tissues requiring special protocols because of their cellular heterogeneity (brain, digestive tract, secretory organs, gonads and gametes, reproductive tract, immune tissues, cartilage); set 3 comprises specific cell preparations (immune cells, tracheal epithelial cells). Dedicated sampling protocols were established and uploaded in https://data.faang.org/protocol/samples. Specificities between mammals and chicken are described when relevant. A total of 73 different tissues or tissue sections were collected, and 21 are common to the four species. Having a common set of tissues will facilitate the transfer of knowledge within and between species and will contribute to decrease animal experimentation. Combining data on the same samples will facilitate data integration. Quality control was performed on some tissues with RNA extraction and RNA quality control. More than 5,000 samples have been stored with unique identifiers, and more than 4,000 were uploaded onto the Biosamples database, provided that standard ontologies were available to describe the sample. Many tissues have already been used to implement FAANG assays, with published results. All samples are available without restriction for further assays. The requesting procedure is described. Members of FAANG are encouraged to apply a range of molecular assays to characterize the functional status of collected samples and share their results, in line with the FAIR (Findable, Accessible, Interoperable, and Reusable) data principles.

15.
Science ; 372(6545): 984-989, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34045355

RESUMO

We investigated genome folding across the eukaryotic tree of life. We find two types of three-dimensional (3D) genome architectures at the chromosome scale. Each type appears and disappears repeatedly during eukaryotic evolution. The type of genome architecture that an organism exhibits correlates with the absence of condensin II subunits. Moreover, condensin II depletion converts the architecture of the human genome to a state resembling that seen in organisms such as fungi or mosquitoes. In this state, centromeres cluster together at nucleoli, and heterochromatin domains merge. We propose a physical model in which lengthwise compaction of chromosomes by condensin II during mitosis determines chromosome-scale genome architecture, with effects that are retained during the subsequent interphase. This mechanism likely has been conserved since the last common ancestor of all eukaryotes.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Evolução Biológica , Cromossomos/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Eucariotos/genética , Genoma , Complexos Multiproteicos/genética , Complexos Multiproteicos/fisiologia , Adenosina Trifosfatases/química , Algoritmos , Animais , Nucléolo Celular/ultraestrutura , Núcleo Celular/ultraestrutura , Centrômero/ultraestrutura , Cromossomos/química , Cromossomos Humanos/química , Cromossomos Humanos/ultraestrutura , Proteínas de Ligação a DNA/química , Genoma Humano , Genômica , Heterocromatina/ultraestrutura , Humanos , Interfase , Mitose , Modelos Biológicos , Complexos Multiproteicos/química , Telômero/ultraestrutura
16.
Nat Commun ; 12(1): 1821, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758196

RESUMO

Gene regulatory elements are central drivers of phenotypic variation and thus of critical importance towards understanding the genetics of complex traits. The Functional Annotation of Animal Genomes consortium was formed to collaboratively annotate the functional elements in animal genomes, starting with domesticated animals. Here we present an expansive collection of datasets from eight diverse tissues in three important agricultural species: chicken (Gallus gallus), pig (Sus scrofa), and cattle (Bos taurus). Comparative analysis of these datasets and those from the human and mouse Encyclopedia of DNA Elements projects reveal that a core set of regulatory elements are functionally conserved independent of divergence between species, and that tissue-specific transcription factor occupancy at regulatory elements and their predicted target genes are also conserved. These datasets represent a unique opportunity for the emerging field of comparative epigenomics, as well as the agricultural research community, including species that are globally important food resources.


Assuntos
Bovinos/genética , Galinhas/genética , Regulação da Expressão Gênica/genética , Genoma/genética , Sequências Reguladoras de Ácido Nucleico/genética , Suínos/genética , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Animais , Animais Domésticos/genética , Sequenciamento de Cromatina por Imunoprecipitação , Elementos Facilitadores Genéticos/genética , Epigênese Genética , Epigenômica , Estudo de Associação Genômica Ampla , Camundongos , Especificidade de Órgãos/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética
17.
Vaccines (Basel) ; 8(4)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987648

RESUMO

Marek's disease (MD) is a lymphoproliferative disease in chickens caused by Marek's disease virus (MDV), a highly oncogenic alphaherpesvirus. Since 1970, MD has been controlled through widespread vaccination of commercial flocks. However, repeated and unpredictable MD outbreaks continue to occur in vaccinated flocks, indicating the need for a better understanding of MDV pathogenesis to guide improved or alternative control measures. As MDV is an intracellular pathogen that infects and transforms CD4+ T cells, the host cell-mediated immune response is considered to be vital for controlling MDV replication and tumor formation. In this study, we addressed the role of CD8+ T cells in vaccinal protection by widely-used monovalent (SB-1 and HVT) and bivalent (SB-1+HVT) MD vaccines. We established a method to deplete CD8+ T cells in chickens and found that their depletion through injection of anti-CD8 monoclonal antibodies (mAb) increased tumor induction and MD pathology, and reduced vaccinal protection to MD, which supports the important role of CD8+ T cells for both MD and vaccinal protection.

18.
BMC Genet ; 21(1): 77, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32677890

RESUMO

BACKGROUND: Marek's disease (MD) is a highly neoplastic disease primarily affecting chickens, and remains as a chronic infectious disease that threatens the poultry industry. Copy number variation (CNV) has been examined in many species and is recognized as a major source of genetic variation that directly contributes to phenotypic variation such as resistance to infectious diseases. Two highly inbred chicken lines, 63 (MD-resistant) and 72 (MD-susceptible), as well as their F1 generation and six recombinant congenic strains (RCSs) with varied susceptibility to MD, are considered as ideal models to identify the complex mechanisms of genetic and molecular resistance to MD. RESULTS: In the present study, to unravel the potential genetic mechanisms underlying resistance to MD, we performed a genome-wide CNV detection using next generation sequencing on the inbred chicken lines with the assistance of CNVnator. As a result, a total of 1649 CNV regions (CNVRs) were successfully identified after merging all the nine datasets, of which 90 CNVRs were overlapped across all the chicken lines. Within these shared regions, 1360 harbored genes were identified. In addition, 55 and 44 CNVRs with 62 and 57 harbored genes were specifically identified in line 63 and 72, respectively. Bioinformatics analysis showed that the nearby genes were significantly enriched in 36 GO terms and 6 KEGG pathways including JAK/STAT signaling pathway. Ten CNVRs (nine deletions and one duplication) involved in 10 disease-related genes were selected for validation by using quantitative real-time PCR (qPCR), all of which were successfully confirmed. Finally, qPCR was also used to validate two deletion events in line 72 that were definitely normal in line 63. One high-confidence gene, IRF2 was identified as the most promising candidate gene underlying resistance and susceptibility to MD in view of its function and overlaps with data from previous study. CONCLUSIONS: Our findings provide valuable insights for understanding the genetic mechanism of resistance to MD and the identified gene and pathway could be considered as the subject of further functional characterization.


Assuntos
Galinhas/genética , Variações do Número de Cópias de DNA , Resistência à Doença/genética , Doença de Marek/genética , Animais , Galinhas/virologia , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala
19.
PLoS Biol ; 18(3): e3000619, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32134914

RESUMO

Many livestock and human vaccines are leaky because they block symptoms but do not prevent infection or onward transmission. This leakiness is concerning because it increases vaccination coverage required to prevent disease spread and can promote evolution of increased pathogen virulence. Despite leakiness, vaccination may reduce pathogen load, affecting disease transmission dynamics. However, the impacts on post-transmission disease development and infectiousness in contact individuals are unknown. Here, we use transmission experiments involving Marek disease virus (MDV) in chickens to show that vaccination with a leaky vaccine substantially reduces viral load in both vaccinated individuals and unvaccinated contact individuals they infect. Consequently, contact birds are less likely to develop disease symptoms or die, show less severe symptoms, and shed less infectious virus themselves, when infected by vaccinated birds. These results highlight that even partial vaccination with a leaky vaccine can have unforeseen positive consequences in controlling the spread and symptoms of disease.


Assuntos
Herpesvirus Galináceo 2/patogenicidade , Doença de Marek/transmissão , Vacinas Virais/farmacologia , Animais , Galinhas , Plumas/virologia , Interações Hospedeiro-Patógeno , Doença de Marek/etiologia , Doença de Marek/mortalidade , Doença de Marek/prevenção & controle , Vacinação , Carga Viral , Vacinas Virais/administração & dosagem , Virulência , Eliminação de Partículas Virais
20.
Vaccine ; 37(43): 6397-6404, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31515142

RESUMO

BACKGROUND: Marek's disease (MD) is a lymphoproliferative disease of chickens caused by Marek's disease virus (MDV), an oncogenic α-herpesvirus. Since 1970, MD has been controlled by widespread vaccination; however, more effective MD vaccines are needed to counter more virulent MDV strains. The bivalent vaccine combination of SB-1 and herpesvirus of turkey (HVT) strain FC126 has been widely used. Nonetheless, the mechanism(s) underlying this synergistic effect has not been investigated. METHODS: Three experiments were conducted where SB-1 or HVT were administered as monovalent or bivalent vaccines to newly hatched chickens, then challenged five days later with MDV. In Experiment 1, levels of MDV replication in PBMCs were measured over time, and tumor incidence and vaccinal protection determined. In Experiment 2, MDV and vaccine strains replication levels in lymphoid organs were measured at 1, 5, 10, and 14 days post-challenge (DPC). In Experiment 3, to verify that the bursa was necessary for HVT protection, a subset of chicks were bursectomized and these birds plus controls were similarly vaccinated and challenged, and the levels of vaccinal protection determined. RESULTS: The efficacy of bivalent SB-1 + HVT surpasses that of either SB-1 or HVT monovalent vaccines in controlling the level of pathogenic MDV in PBMCs until the end of the study, and this correlated with the ability to inhibit tumor formation. SB-1 replication in the spleen increased from 1 to 14 DPC, while HVT replicated only in the bursa at 1 DPC. The bursa was necessary for immune protection induced by HVT vaccine. CONCLUSION: Synergy of SB-1 and HVT vaccines is due to additive influences of the individual vaccines acting at different times and target organs. And the bursa is vital for HVT to replicate and induce immune protection.


Assuntos
Linfoma/veterinária , Vacinas contra Doença de Marek/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinação/veterinária , Vacinas Virais/imunologia , Animais , Galinhas/imunologia , Sinergismo Farmacológico , Herpesvirus Meleagrídeo 1/imunologia , Herpesvirus Galináceo 2/imunologia , Herpesvirus Galináceo 2/fisiologia , Leucócitos Mononucleares/virologia , Tecido Linfoide/virologia , Linfoma/prevenção & controle , Linfoma/virologia , Vacinas contra Doença de Marek/administração & dosagem , Cavidade Peritoneal/virologia , Doenças das Aves Domésticas/virologia , Vacinas Virais/administração & dosagem , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA