Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 677(Pt A): 790-799, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39121663

RESUMO

The increasing demand for high-performance electrode materials in lithium-ion batteries has driven significant attention towards Nb2O5 due to its high working voltage, large theoretical capacity, environmental friendliness, and cost-effectiveness. However, inherent drawbacks such as poor electrical conductivity and sluggish electrochemical reaction kinetics have hindered its lithium storage performance. In this study, we introduced KCa2Nb3O10 into Nb2O5 to form a heterojunction, creating a built-in electric field to enhance the migration and diffusion of Li+, effectively promoting electrochemical reaction kinetics. Under the regulation of the built-in electric field, the charge transfer resistance of the KCa2Nb3O10/Nb2O5 anode decreased by 3.4 times compared to pure Nb2O5, and the Li+ diffusion coefficient improved by two orders of magnitude. Specifically, the KCa2Nb3O10/Nb2O5 anode exhibited a high capacity of 276 mAh g-1 under 1 C, retaining a capacity of 128 mAh g-1 even at 100 C. After 3000 cycles at 25 C, the capacity degradation was only 0.012% per cycle. Through combined theoretical calculations and experimental validation, it was found that the built-in electric field induced by the heterojunction interface contributed to an asymmetric charge distribution, thereby improving the rates of charge and ion migration within the electrode, ultimately enhancing the electrochemical performance of the electrode material. This study provides an effective approach for the rational design of high-performance electrode materials.

2.
J Colloid Interface Sci ; 665: 564-572, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552573

RESUMO

Rechargeable aqueous zinc ion batteries (ZIBs) have emerged as a promising alternative to lithium-ion batteries due to their inherent safety, abundant availability, environmental friendliness and cost-effectiveness. However, the cathodes in ZIBs encounter challenges such as structural instability, low capacity, and sluggish kinetics. In this study, we constructed BiVO4@VO2 (BVO@VO) heterojunction cathode material with bismuth vanadate and vanadium dioxide phases for ZIBs, which demonstrate significant advancements in both aqueous and quasi-solid-state ZIBs. Benefitting from the heterojunction structure, the materials present a high capacity of 262 mAh g-1 at 0.1 A g-1, superb cyclic stability with 96% capacity retention after 1000 cycles at 2 A g-1, and outstanding rate property with a specific capacity of 218 mAh g-1 even at a high rate of 5.0 A g-1. Furthermore, the flexible quasi-solid-state ZIBs incorporating the BVO@VO cathode demonstrate prolonged cyclic life performance with a remarkable specific capacity of 234 mAh g-1 over 100 cycles at a current density of 0.1 A g-1. This study potentially paves the way for the utilization of heterointerface-enhanced zinc ion diffusion for vanadium-based materials in ZIBs, thereby providing a new approach for the design and investigation of high-performance zinc-ion systems.

3.
J Colloid Interface Sci ; 661: 831-839, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38330655

RESUMO

Electrochemical reduction of CO2 (CO2RR) to fuels and chemicals is a promising route to close the anthropogenic carbon cycle for sustainable society. The Cu-based catalysts in producing high-value hydrocarbons feature unique superiorities, yet challenges remain in achieving high selectivity. In this work, Cu@ZIF-8 NWs with highly-exposed Cu nanowires (Cu NWs) and ZIF-8 interface are synthesized via a surfactant-assisted method. Impressively, Cu@ZIF-8 NWs exhibit excellent stability and a high Faradaic efficiency of 57.5% toward hydrocarbons (CH4 and C2H4) at a potential of -0.7 V versus reversible hydrogen electrode. Computational calculations combining with experiments reveal the formation of Cu and ZIF-8 interface optimizes the adsorption of reaction intermediates, particularly stabilizing the formation of *CHO, thereby enabling efficient preference for hydrocarbons. This work highlights the potential of constructing metals and MOFs heterogeneous interfaces to enhance catalytic properties and offers valuable insights for the design of highly efficient CO2RR catalysts.

4.
Nano Lett ; 24(4): 1392-1398, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38227481

RESUMO

Nanoparticle sintering has long been a major challenge in developing catalytic systems for use at elevated temperatures. Here we report an in situ electron microscopy study of the extraordinary sinter resistance of a catalytic system comprised of sub-2 nm Pt nanoparticles on a Se-decorated carbon support. When heated to 700 °C, the average size of the Pt nanoparticles only increased from 1.6 to 2.2 nm, while the crystal structure, together with the {111} and {100} facets, of the Pt nanoparticles was well retained. Our electron microscopy analyses suggested that the superior resistance against sintering originated from the Pt-Se interaction. Confirmed by energy-dispersive X-ray elemental mapping and electron energy loss spectra, the Se atoms surrounding the Pt nanoparticles could survive the heating. This work not only offers an understanding of the physics behind the thermal behavior of this catalytic material but also sheds light on the future development of sinter-resistant catalytic systems.

5.
J Colloid Interface Sci ; 658: 238-246, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104406

RESUMO

Solar-driven desalination is an environmentally sustainable method to alleviate the problems of freshwater scarcity and the energy crisis. However, how to improve the synergy between the photothermal material and the evaporator to achieve high photothermal conversion efficiency simultaneously, excellent thermal management system and good salt resistance remains a challenge. Here, a mushroom-shaped solar evaporation device is designed and fabricated with iron diselenide/carbon black (FeSe2/CB) coated cellulose acetate (CA) film as mushroom surface and cotton swab as mushroom handle, which presented high solar-driven evaporation and excellent salt resistance. Thanks to the unique photothermal effect and the synergistic effect, the FeSe2/CB composites enabled a promising photothermal conversion efficiency of up to 65.8 °C after 180 s. The mushroom-shaped evaporation device effectively overcomes water transport and steam spillage channel blockage caused by salt crystallization through its unique vertical transport water channels and conical air-water interface. When exposed to real sunlight, the solar evaporation rate of the steam generation structure reached as high as 2.03 kg m-2 h-1, which is more than 13 times higher than natural evaporation. This study offered new insights into the higher solar-driven evaporation rate and salt-blocking resistance of the FeSe2/CB mushroom-shaped solar evaporation device for solar-powered water production.

6.
Acc Chem Res ; 56(7): 900-909, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36966410

RESUMO

ConspectusGalvanic replacement synthesis involves oxidation and dissolution of atoms from a substrate while the salt precursor to another material with a higher reduction potential is reduced and deposited on the substrate. The driving force or spontaneity of such a synthesis comes from the difference in reduction potential between the redox pairs involved. Both bulk and micro/nanostructured materials have been explored as substrates for galvanic replacement synthesis. The use of micro/nanostructured materials can significantly increase the surface area, offering immediate advantages over the conventional electrosynthesis. The micro/nanostructured materials can also be intimately mixed with the salt precursor in a solution phase, resembling the setting of a typical chemical synthesis. The reduced material tends to be directly deposited on the surface of the substrate, just like the situation in an electrosynthesis. Different from an electrosynthesis where the two electrodes are spatially separated by an electrolyte solution, the cathodes and anodes are situated on the same surface, albeit at different sites, even for a micro/nanostructured substrate. Since the oxidation and dissolution reactions occur at sites different from those for reduction and deposition reactions, one can control the growth pattern of the newly deposited atoms on the same surface of a substrate to access nanostructured materials with diverse and controllable compositions, shapes, and morphologies in a single step. Galvanic replacement synthesis has been successfully applied to different types of substrates, including those made of crystalline and amorphous materials, as well as metallic and nonmetallic materials. Depending on the substrate involved, the deposited material can take different nucleation and growth patterns, resulting in diverse but well-controlled nanomaterials sought for a variety of studies and applications.In this Account, we recapitulate our efforts over the past two decades in fabricating metal nanostructures for a broad range of applications by leveraging the unique capability of galvanic replacement synthesis. We begin with a brief introduction to the fundamentals of galvanic replacement between metal nanocrystals and salt precursors, followed by a discussion of the roles played by surface capping agents in achieving site-selected carving and deposition for the fabrication of various bimetallic nanostructures. Two examples based on the Ag-Au and Pd-Pt systems are selected to illustrate the concept and mechanism. We then highlight our recent work on the galvanic replacement synthesis involving nonmetallic substrates, with a focus on the protocol, mechanistic understanding, and experimental control for the fabrication of Au- and Pt-based nanostructures with tunable morphologies. Finally, we showcase the unique properties and applications of nanostructured materials derived from galvanic replacement reactions for biomedicine and catalysis. We also offer some perspectives on the challenges and opportunities in this emerging field of research.

7.
J Am Chem Soc ; 145(2): 1216-1226, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36621988

RESUMO

We report a method to experimentally control the heterogeneous nucleation and growth of Au nanoparticles on the surface of amorphous Se (a-Se) nanospheres. When a AuIII precursor is added into a colloidal suspension of a-Se nanospheres, galvanic replacement occurs between them and the resultant Au0 atoms then heterogeneously nucleate and grow from the surface of the a-Se nanospheres. As a unique feature of this system, the Au0 atoms can only be produced on the surface of the a-Se nanospheres in the nucleation stage. Once Au nuclei are formed on the surface at the very beginning of a synthesis, they will serve as the preferential sites for further deposition of Au0 atoms, making it possible to control the number of Au nanoparticles on each nanosphere and the morphology of the final product. The dependence of the initial reduction rate on the pH can be used to obtain Se-Au hybrid nanoparticles containing one, two, three, and multiple Au nanoparticles on the surface of each a-Se nanosphere. The presence of Au patches on the hybrid nanoparticles offers an experimental handle to optimize the ligand distribution for the achievement of enhanced cellular uptake and cytotoxicity for the a-Se nanospheres.


Assuntos
Nanopartículas Metálicas , Nanosferas , Ouro , Nanopartículas Metálicas/toxicidade
8.
J Colloid Interface Sci ; 625: 289-296, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35717844

RESUMO

Despite significant of solar energy to power water evaporation in seawater desalination, the commercial application of this technology is limited by the poor light absorption and low photothermal conversion of existing photothermal materials. Herein, we report a simple method for solar-driven water evaporation using a device comprising Cu2-xSe/Nb2CTx nanocomposites supported by a glass microfiber membrane, which utilizes cotton thread as water transport pathway. The proposed device demonstrates excellent light absorption, water transportation, and thermal management. Benefiting from the strong synergetic photothermal effect of Cu2-xSe and Nb2CTx, the Cu2-xSe/Nb2CTx nanocomposites function as an efficient solar absorber with excellent photothermal conversion efficiency. The rough surface, low thermal conductivity and good hydrophilicity of glass microfiber membrane could maximize light capture, limit heat loss, and timely replenish water during the water evaporation process. When evaluated as a water evaporation system for outdoor seawater desalination, the system achieved a water evaporation of 12.60 kg·m-2 within 6 h. High fresh water generation rate is an important embodiment of high photothermal conversion efficiency. This study demonstrates a new route for designing solar desalination devices with high photothermal conversion properties.

9.
Colloids Surf B Biointerfaces ; 216: 112507, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35523102

RESUMO

Single chemotherapy often causes severe adverse effects and chemoresistance which limits therapeutic efficacy. Recently, combination of chemotherapy with photothermal therapy (PTT) have received broad attention for synergistic treatment of osteosarcoma, ultimately resulting in the enhancement of therapeutic efficacy of anticancer drugs. In this study, we have developed a novel drug delivery system based on polydopamine (pDA)-modified ZIF-8 nanoparticles loaded with methotrexate (MTX) (pDA/MTX@ZIF-8 NPs). Herein, pDA modification avoided the explosive release of the drug, and improved the biocompatibility and near-infrared (NIR) light absorbance performance of nanoparticles. The as-prepared pDA/MTX@ZIF-8 NPs could be used as drug targeting delivery system and simultaneously displayed excellent photothermal effects under NIR irradiation. Biology assays in vitro indicated that the pDA/MTX@ZIF-8 NPs were able to efficiently induce MG63 cell apoptosis through reducing mitochondrial membrane potentials (MMPs), and the introduction of photothermal agents enhanced the antitumor effect and decreased the dose of chemotherapeutic drugs. Moreover, the optimized pDA/MTX@ZIF-8 NPs (40 µg/mL) exhibited better photothermal conversion performance and facilitated tumor cells death. These results triumphantly exhibit that the pDA/MTX@ZIF-8 NPs have a synergistic effect of chemo-photothermal therapy (combination index CI = 0.346) and excellent biocompatibility, which has unexceptionable prospects for the therapy of osteosarcoma.


Assuntos
Neoplasias Ósseas , Nanopartículas , Osteossarcoma , Neoplasias Ósseas/tratamento farmacológico , Doxorrubicina/farmacologia , Portadores de Fármacos , Liberação Controlada de Fármacos , Humanos , Indóis , Metotrexato/farmacologia , Nanopartículas/uso terapêutico , Osteossarcoma/tratamento farmacológico , Fototerapia/métodos , Terapia Fototérmica , Polímeros
10.
Chem Commun (Camb) ; 57(69): 8628-8631, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34369510

RESUMO

We demonstrate a material by dispersing a thermochromic mixture of leuco dye, developer, and solvent as microspheres in a polymer matrix to improve the efficiency of building energy management. The smart, photo-thermochromic film can automatically switch between a colored and colorless state in response to climate temperature and light to realize photothermal heating and cooling.

11.
Adv Healthc Mater ; 10(14): e2100402, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34050616

RESUMO

Bacterial-associated wound infection and antibiotic resistance have posed a major burden on patients and health care systems. Thus, developing a novel multifunctional antibiotic-free wound dressing that cannot only effectively prevent wound infection, but also facilitate wound healing is urgently desired. Herein, a series of multifunctional nanocomposite hydrogels with remarkable antibacterial, antioxidant, and anti-inflammatory capabilities, based on bacterial cellulose (BC), gelatin (Gel), and selenium nanoparticles (SeNPs), are constructed for wound healing application. The BC/Gel/SeNPs nanocomposite hydrogels exhibit excellent mechanical properties, good swelling ability, flexibility and biodegradability, and favorable biocompatibility, as well as slow and sustainable release profiles of SeNPs. The decoration of SeNPs endows the hydrogels with superior antioxidant and anti-inflammatory capability, and outstanding antibacterial activity against both common bacteria (E. coli and S. aureus) and their multidrug-resistant counterparts. Furthermore, the BC/Gel/SeNPs hydrogels show an excellent skin wound healing performance in a rat full-thickness defect model, as evidenced by the significantly reduced inflammation, and the notably enhanced wound closure, granulation tissue formation, collagen deposition, angiogenesis, and fibroblast activation and differentiation. This study suggests that the developed multifunctional BC/Gel/SeNPs nanocomposite hydrogel holds a great promise as a wound dressing for preventing wound infection and accelerating skin regeneration in clinic.


Assuntos
Nanopartículas , Selênio , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Celulose , Escherichia coli , Gelatina , Humanos , Hidrogéis , Ratos , Staphylococcus aureus
12.
Front Chem ; 9: 668336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859976

RESUMO

Carbon nanomaterials with high electrical conductivity, good chemical, and mechanical stability have attracted increasing attentions and shown wide applications in recent years. In particularly, hollow carbon nanomaterials, which possess ultrahigh specific surface area, large surface-to-volume ratios, and controllable pore size distribution, will benefit to provide abundant active sites, and mass loading vacancy, accelerate electron/ion transfer as well as contribute to the specific density of energy storage systems. In this mini-review, we summarize the recent progresses of hollow carbon nanomaterials by focusing on the synthesis approaches and corresponding nanostructures, including template-free and hard-template carbon hollow structures, metal organic framework-based hollow carbon structures, bowl-like and cage-like structures, as well as hollow fibers. The design and synthesis strategies of these hollow carbon nanomaterials have been systematically discussed. Finally, the emerging challenges and future prospective for developing advanced hollow carbon structures were outlined.

13.
Environ Sci Pollut Res Int ; 28(30): 40793-40807, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33772475

RESUMO

Tungsten trioxide nanoparticles (WO3 NPs) have shown increasing promise in biological and biomedical fields in recent years. However, their possible hazards, especially the adverse effects related to their sizes on human health and environment, are still yet poorly understood. In this study, we compared the hepatotoxicity in mice induced by WO3 nanorods of two different lengths (125-200 nm and 0.8-2 µm) via intraperitoneal injection, and explored the protective role of melatonin, an antioxidant, against the hepatotoxicity. The results showed that 10 mg/kg/day of shorter WO3 nanorods could cause obvious hepatic function impairment, histopathological lesions, and significant enhancement in levels of oxidative stress and inflammation in mouse liver. However, similar effects were found only in the 20 mg/kg/day longer WO3 nanorods-treated mice, and these adverse effects were attenuated by pretreatment with melatonin. These findings indicate that WO3 nanorods can exert hepatotoxicity in mice in a dose- and length-dependent manner, and that shorter WO3 nanorods cause more severe hepatotoxicity than their longer counterparts. Melatonin could serve as an effective protective agent against the longer WO3 nanorods-induced hepatotoxicity by decreasing the oxidative stress level. This study is important for determining the environmental and human health risks of exposure to WO3 NPs and their size-dependent toxicity, and provides an appealing strategy to avoid the adverse effects. WO3 nanorods with different lengths can exert hepatotoxicity in mice, in a dose- and length-dependent manner. Short WO3 nanorods causes more severe hepatic injury than long ones. Melatonin exhibits an effectively protective effects against WO3 nanorods-induced hepatic injury through reducing the oxidative stress level.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Melatonina , Nanotubos , Animais , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fígado , Melatonina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Óxidos , Tungstênio
14.
Adv Healthc Mater ; 9(19): e2000872, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32864898

RESUMO

Traditional wound dressings mainly participate in the passive healing processes and are rarely engaged in active wound healing by stimulating skin cell behaviors. Electrical stimulation (ES) has been known to regulate skin cell behaviors. Herein, a series of multifunctional hydrogels based on regenerated bacterial cellulose (rBC) and MXene (Ti3 C2 Tx ) are first developed that can electrically modulate cell behaviors for active skin wound healing under external ES. The composite hydrogel with 2 wt% MXene (rBC/MXene-2%) exhibits the highest electrical conductivity and the best biocompatibility. Meanwhile, the rBC/MXene-2% hydrogel presents desired mechanical properties, favorable flexibility, good biodegradability, and high water-uptake capacity. An in vivo study using a rat full-thickness defect model reveals that this rBC/MXene hydrogel exhibits a better therapeutic effect than the commercial Tegaderm film. More importantly, in vitro and in vivo data demonstrate that coupling with ES, the hydrogel can significantly enhance the proliferation activity of NIH3T3 cells and accelerate the wound healing process, as compared to non-ES controls. This study suggests that the biodegradable and electroactive rBC/MXene hydrogel is an appealing candidate as a wound dressing for skin wound healing, while also providing an effective synergistic therapeutic strategy for accelerating wound repair process through coupling ES with the hydrogel dressing.


Assuntos
Hidrogéis , Titânio , Animais , Bandagens , Celulose , Estimulação Elétrica , Camundongos , Células NIH 3T3 , Ratos , Cicatrização
15.
Int J Biol Macromol ; 152: 576-583, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32105684

RESUMO

Polyacrylamide (PAM) has been used as a coagulant aid in water treatment process for past decades, but it has caused great damages to human nervous system. Developing new coagulant aid with high biological safety is urgently demanded. This study provides a natural biomacromolecule coagulant aid with good biosecurity-Enteromorpha prolifera polysaccharide (Ep). Its coagulant aid efficiency and mechanism were investigated in terms of organics removal, floc properties and membrane fouling degree. In addition, contrast experiments were conducted with PAM to evaluate its potential of industrial applications. Results showed that organics removal could be increased by 23% when 0.3 mg/L Ep was used, which exhibited comparable aid effects to PAM. Due to the bridging-sweep aid role of Ep, flocs sizes, growth rate and recovery factor reached 470 µm, 62.6 µm/min and 0.492, respectively, while only 170 µm, 14.0 µm/min and 0.326 were obtained by PAM. Additionally, flocs exhibited more porous and multi-branched structures when Ep was applied, which caused less ultrafiltration membrane fouling (eventual J/J0 value = 0.52). As a result, Ep could be considered as a potential substitute of PAM, since better biosecurity, higher organics removal and lower membrane fouling could be obtained simultaneously by Ep addition.


Assuntos
Incrustação Biológica/prevenção & controle , Substâncias Húmicas , Membranas Artificiais , Polissacarídeos/química , Ultrafiltração/métodos , Ulva/química , Resinas Acrílicas , Coagulantes/química , Floculação , Cinética , Espectroscopia de Ressonância Magnética , Teste de Materiais , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Purificação da Água/métodos
16.
J Phys Chem Lett ; 11(3): 905-912, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31951138

RESUMO

Conversion-type anodes with high theoretical capacity have attracted enormous interest for lithium storage, although their extremely poor conductivity and volume variations during lithiation-delithiation processes seriously limit their practical applications. Herein, a facile strategy to fabricate ZnO/ZnS@N-C heterostructures decorated on carbon nanotubes (ZnO/ZnS@N-C/CNTs) with metal-organic framework assistance is developed. The as-prepared anodes display higher reversible capacity of 1020.6 mAh g-1 at 100 mA g-1 after 200 cycles and excellent high-cyclability with 386.6 mAh g-1 at 1000 mA g-1 over 400 cycles. The conductive CNT network and N-doped carbon shell could successfully improve the electrical conductivity and avoid the aggregation of ultrasmall ZnO/ZnS nanoparticles. The results calculated from density functional theory also suggest that the ZnO/ZnS heterostructures could promote electron-transfer capability.

17.
Nano Lett ; 19(8): 4997-5002, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31305086

RESUMO

Carbon-supported Pt nanoparticles are used as catalysts for a variety of reactions including the oxygen reduction reaction (ORR) key to proton-exchange membrane fuel cells, but their catalytic performance has long been plagued by detachment and sintering. Here we report the in situ growth of sub-2 nm Pt particles on a commercial carbon support via the galvanic reaction between a Pt(II) precursor and a uniform film of amorphous Se predeposited on the support. The residual Se could serve as a linker to strongly anchor the Pt nanoparticles to the carbon surface, leading to a catalytic system with extraordinary activity and durability toward ORR. Even after 20 000 cycles of accelerated durability test, the sub-2 nm Pt particles were still dispersed well on the carbon support and maintained a mass activity more than three-times as high as the pristine value of a commercial Pt/C catalyst.

18.
Adv Healthc Mater ; 8(6): e1801113, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30393986

RESUMO

Calcium ion (Ca2+ ), an abundant species in the body, is a potential therapeutic ion with manageable side effects. However, the delivery of such a highly charged species represents a great challenge. Here, a nanosystem based on Au nanocages (AuNCs) and a phase-change material (PCM) for delivering calcium chloride (CaCl2 ) into cancer cells and thereby triggering cell death upon near-infrared (NIR) irradiation is demonstrated. In the absence of NIR irradiation, the nanosystem, denoted CaCl2 -PCM-AuNC, shows negligible cytotoxicity because the Ca2+ ions are fully encapsulated in a solid matrix. Upon NIR irradiation, the Ca2+ ions are swiftly released due to the melting of PCM matrix in response to photothermal heating. The sudden increase in intracellular Ca2+ causes disruption to the mitochondrial Ca2+ homeostasis and thus the loss of mitochondrial membrane potential, subsequently resulting in cell apoptosis. This nanosystem provides a new method for cancer treatment by tightly managing the intracellular concentration of a physiologically essential element.


Assuntos
Cloreto de Cálcio/química , Cálcio/metabolismo , Raios Infravermelhos , Nanopartículas/química , Células A549 , Sobrevivência Celular/efeitos dos fármacos , Endocitose , Ouro/química , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia de Fluorescência , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Nanotubos/química , Temperatura
19.
ACS Biomater Sci Eng ; 5(11): 5935-5946, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33405684

RESUMO

Surgical treatment of osteosarcoma is usually difficult to radically eliminate cancer cells, and it will concomitantly result in bone defects with varied sizes. To prevent tumor recurrence and reconstruction of the bone defect, there is a pressing need to develop suitable implants that have anticancer capability while promoting the regeneration of bone tissues. Here, we first report the design and fabrication of titanium-based implants engineered with a series of alveolate double-layered zinc titanate nanogridding coatings (NG-Zn0.01, NG-Zn0.05, NG-Zn0.10, NG-Zn0.15, and NG-Zn0.20). Biological assays in vitro indicate that the NG-Zn samples with long-lasting Zn ion release are able to efficiently inhibit the proliferation of osteosarcoma cells (MG63) in a dose-dependent manner, trigger cell cycle arrest, and induce cell apoptosis by the activation of the mitochondria pathway. More importantly, the optimized NG-Zn0.15 implant shows significant tumor inhibitory and proapoptotic abilities based on the assessment using a nude mouse osteosarcoma xenograft model. Additionally, the zinc titanate coatings with the nanogridding structure and appropriate Zn content exhibit favorable effects on osteoblast (MC3T3-E1) growth in vitro. It is verified that the NG-Zn0.15 implant is the optimal one with high efficiency against tumors and good biocompatibility, and it has promising potential in the surgical treatment of osteosarcoma.

20.
Nanoscale ; 10(47): 22312-22318, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30467567

RESUMO

We report a method based on interfacial, anti-solvent-induced precipitation in a fluidic device for the continuous and scalable processing of phase-change materials (PCMs) into uniform nanoparticles with controlled diameters in the range of 10-100 nm. A eutectic mixture of lauric acid and stearic acid, with a well-defined melting point at 39 °C, serves as an example to demonstrate the concept. In the fluidic device, a coaxial flow is created by introducing a PCM solution in ethanol and a lipid solution in water (the anti-solvent) as the focused and focusing phases, respectively. The formation of lipid-capped PCM nanoparticles is governed by diffusion-controlled mixing of ethanol and water. During the production, both doxorubicin (DOX, an anticancer drug) and indocyanine green (ICG, a near-infrared dye) can be readily loaded into the PCM nanoparticles to give a smart drug release system. Upon irradiation with near-infrared light, the photothermal heating caused by ICG can melt the PCM and thereby trigger the release of DOX. This work not only provides a new technique for the continuous processing of PCMs and other soft materials into uniform nanoparticles with controlled sizes but also demonstrates a biocompatible system for controlled release and related applications.


Assuntos
Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Nanopartículas/química , Células A549 , Antineoplásicos/farmacologia , Materiais Biocompatíveis/química , Doxorrubicina/química , Etanol/química , Humanos , Hipertermia Induzida/métodos , Verde de Indocianina/química , Raios Infravermelhos , Ácidos Láuricos/química , Lipídeos/química , Polietilenoglicóis , Solventes/química , Ácidos Esteáricos/química , Estresse Mecânico , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA