RESUMO
The conventional behavior recognition strategy for wearable sensors used in high-temperature environments typically requires an external power supply, and the manufacturing process is cumbersome. Herein, we present a rational design strategy based on fully flexible printable materials and a customized device-manufacturing process for skin-conformable triboelectric nanogenerator sensors. In detail, using high temperature-resistant ink and 3D printing technology to manufacture a coaxial triboelectric nanogenerator (C-TENG) sensor, the C-TENG exhibits high stretchability (>400%), a wide working range (>250 °C), and high output voltage (>100 V). The C-TENG can be worn on various parts of the human body, providing a robust skin-device interface that recognizes diverse human behaviors. Using machine learning algorithms, behaviors such as walking, running, sitting, squatting, climbing stairs, and falling can be identified, achieving 100% behavior recognition accuracy through the selective input and optimization of an appropriate dataset. This paper provides a research perspective for the customization, extension, and rapid fabrication of heat-resistant, fully flexible TENGs.
RESUMO
The treatment of KRAS mutant tumors remains challenging and dual-targeted small-molecule drugs are considered to be innovative therapeutic alternatives. Herein, we discovered a series of SOS1 and EGFR dual inhibitors by employing a fused pharmacophore strategy and structural optimization. Notably, compound 4 exhibited potent SOS1 (IC50 = 8.3 nM) and EGFR (IC50 = 14.6 nM) inhibitory activities and markedly inhibited the proliferation of other KRAS-mutant cancer cell lines. Furthermore, Western blot analysis confirmed that compound 4 effectively reduced the level of downstream p-ERK. These results indicated that compound 4 could serve as a potential compound for treating KRAS mutant tumors.
RESUMO
In the post-pandemic era, psychological traumas have emerged as major mental health issues. However, the post-traumatic reactions and their connections with social-emotional competence among high school students experiencing COVID-19 lockdown have not been adequately explored. This study aimed to reveal the characteristics of their positive and negative post-traumatic reactions, and their connections with social-emotional competence. Network analysis was used on data from 1096 Chinese high school students who experienced COVID-19 lockdown. Measures included the DSECS-S, the PTGI and the PC-PTSD-5. The results revealed that "Valuing life" and "Recalling unwillingly" were identified as core factors of post-traumatic reactions, while "Having close friendships", "Getting along well with others" and "Respecting others' emotions" played a bridging role in connecting the communities of social-emotional competence and post-traumatic reactions. This study enriches research on post-traumatic reactions, emphasizing the importance of implementing social-emotional competence programs to tackle mental health crises.
RESUMO
The emergence of plasmid-mediated resistance threatens the efficacy of polymyxins as the last line of defense against pan-drug-resistant infections. However, we have found that using Mueller-Hinton II (MHII), the standard minimum inhibitory concentration (MIC) medium, results in MIC data that are disconnected from in vivo treatment outcomes. We found that culturing putative colistin-resistant Acinetobacter baumannii clinical isolates, as defined by MICs of >2 mg/L in standard MHII testing conditions, in bicarbonate-containing media reduced MICs to the susceptible range by preventing colistin resistance-conferring lipopolysaccharide modifications from occurring. Furthermore, the lower MICs in bicarbonate-containing media accurately predicted in vivo efficacy of a human-simulated dosing strategy of colistin and polymyxin B in a lethal murine infection model for some polymyxin-resistant A. baumannii strains. Thus, current polymyxin susceptibility testing methods overestimate the contribution of polymyxin resistance-conferring mutations and incorrectly predict antibiotic activity in vivo. Polymyxins may remain a viable therapeutic option against Acinetobacter baumannii strains heretofore determined to be "pan-resistant."
Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Colistina , Testes de Sensibilidade Microbiana , Polimixina B , Polimixinas , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Camundongos , Animais , Polimixinas/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Colistina/farmacologia , Polimixina B/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Farmacorresistência Bacteriana/genéticaRESUMO
BACKGROUNDS: Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver diseases. The leaves of Broussonetia papyrifera contain a large number of flavonoids, which have a variety of biological functions. METHODS: In vitro experiments, free fatty acids were used to stimulate HepG2 cells. NAFLD model was established in vivo in mice fed with high fat diet (HFD) or intraperitoneally injected with Tyloxapol (Ty). At the same time, Total flavonoids of Broussonetia papyrifera (TFBP) was used to interfere with HepG2 cells or mice. RESULTS: The results showed that TFBP significantly decreased the lipid accumulation induced by oil acid (OA) with palmitic acid (PA) in HepG2 cells. TFBP decreased the total cholesterol (TC), the triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and increased high-density lipoprotein cholesterol (HDLC) in serum. TFBP could also effectively inhibit the generation of reactive oxygen species (ROS) and restrained the level of myeloperoxidase (MPO), and enhance the activity of superoxide dismutase (SOD) to alleviate the injury from oxidative stress in the liver. Additionally, TFBP activated nuclear factor erythroid-2-related factor 2 (Nrf2) pathway to increasing the phosphorylation of AMP-activated protein kinase (AMPK). Meanwhile, protein levels of mTORC signaling pathway were evidently restrained with the treatment of TFBP. CONCLUSION: Our experiments proved that TFBP has the therapeutic effect in NAFLD, and the activation of Nrf2 and AMPK signaling pathways should make sense.
Assuntos
Proteínas Quinases Ativadas por AMP , Broussonetia , Flavonoides , Fator 2 Relacionado a NF-E2 , Hepatopatia Gordurosa não Alcoólica , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Humanos , Camundongos , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Broussonetia/química , Dieta Hiperlipídica/efeitos adversos , Flavonoides/farmacologia , Células Hep G2/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismoRESUMO
Background: There are few epidemiological data on axillary apocrine bromhidrosis (AAB) in the Chinese population, making it impossible to accurately estimate its prevalence or impact on individuals. Objective: To estimate the prevalence of AAB in China, and to survey and compare the psychological status of individuals with and without AAB. Methods: Students in several universities in China were surveyed online for AAB, and the prevalence of AAB was calculated. The Symptom Checklist 90 (SCL-90) was used to evaluate the psychological status. Results: The prevalence of AAB in the surveyed students was 7.5% (194/2571). The projected number of Chinese higher education students with AAB was about 3 million. The onset age of AAB was mainly between 11 and 20 years old (79.90%, 155/194). 68.04% (132/194) of individuals with AAB had a positive family history, and 60.30% (117/194) had wet earwax. Individuals with AAB often felt depression, anxiety, loneliness and social alienation, and scored significantly higher on the nine primary psychological symptom dimensions than individuals without AAB. Conclusion: AAB affects a small proportion but large numbers of Chinese population. China and the West or East-Asia and the West have different perception, recognition and treatment preferences for AAB.
RESUMO
OBJECTIVE: This study aimed to investigate if there was a link between the biomechanical properties and the number of suture strands in repairing a rotator cuff (RC) tear in a bovine model using the transosseous technique. METHODS: Fifty-four fresh tendons from bovine (mean age: 7.1 ± 0.5 months; range 6.5-7.5 months) and 1 humeral head from porcine (8.5 months) were used in this study. All the specimens had no apparent abnormalities. Using the transosseous structure, the RC tendon was detached from the greater tuberosity and randomly assigned to 3-strand, 4-strand, 5-strand, and 6-strand groups, with the glenohumeral abducted at 0° and 90°. Biomechanical tests were conducted to compare the groups' differences in the failure mode, pull-toextension load in the 1-, 2-, and 3-mm formations, and the maximum load. The analysis of variance test was performed to compare the results. Statistical significance was set at P < .05. RESULTS: No significant difference was observed among the groups concerning the tendon characteristics (all P ≥ .05). At 90° shoulder abduction, a significant difference was detected in the load between 3- and 5-strand groups for 1-mm gap formation (P=.049). No statistical differences were noted in the load at the gap displacements in the 1-, 2-, and 3-mm formations at 0° and 90° shoulder abduction (all P > .05). The maximum failure load and extension in maximal tension increased with the number of sutures. CONCLUSION: The maximum load and ultimate extension increase with the number of sutures at both positions. The number of sutures was not an influencing factor of gap formation. Regarding the tear size and tension of the RC, choosing the appropriate number of strands individually instead of excessively increasing the number of sutures is advocated for RC repair.
RESUMO
This study targeted the sustainable utilization of chitin and chitosan from crayfish shell waste, and further depolymerization of the recovered products in one step through synergy between microwaves and graphene oxide, aiming for the monosaccharides, 5-hydroxymethylfurfural and other high-value products. The results indicated that graphene oxide was more effective than graphene in enhancing the microwave absorption properties of the system, which is contrary to the parameters of their dielectric properties. The heating rate was increased by 0.37 K/s and 0.26 K/s when graphene oxide was introduced into the chitin and chitosan depolymerization systems, respectively, at a microwave power of 5 W/g. The mechanism underlying the impact of graphene oxide on chitin and chitosan under a microwave field was proposed by analyzing the variations in the depolymerization products of chitin and chitosan systems under different reaction conditions, including holding time, catalyst content, solvent content, and reaction temperature. Furthermore, the recovered graphene oxide exhibited delamination upon redispersion in water, which was not observed in the initial samples. The infrared spectra and scanning electron microscopy results suggest that the catalytic reaction is associated with oxygen-containing functional groups. This study demonstrated the synergistic effect of microwaves and graphene oxide on the depolymerization of chitin and chitosan, and the ability to achieve rapid one-step depolymerization in an acid/alkali-free solvent, which provides a green and promising development for the degradation of carbohydrate macromolecules in crustacean solid waste.
RESUMO
Ecological risk assessment of combined polluted soil has been conducted mostly on the basis of the risk screening value (RSV) of a single pollutant. However, due to its defects, this method is not accurate enough. Not only were the effects of soil properties neglected, but the interactions among different pollutants were also overlooked. In this study, the ecological risks of 22 soils collected from four smelting sites were assessed by toxicity tests using soil invertebrates (Eisenia fetida, Folsomia candida, Caenorhabditis elegans) as subjects. Besides a risk assessment based on RSVs, a new method was developed and applied. A toxicity effect index (EI) was introduced to normalize the toxicity effects of different toxicity endpoints, rendering assessments comparable based on different toxicity endpoints. Additionally, an assessment method of ecological risk probability (RP), based on the cumulative probability distribution of EI, was established. Significant correlation was found between EI-based RP and the RSV-based Nemerow ecological risk index (NRI) (p < 0.05). In addition, the new method can visually present the probability distribution of different toxicity endpoints, which is conducive to aiding risk managers in establishing more reasonable risk management plans to protect key species. The new method is expected to be combined with a complex dose-effect relationship prediction model constructed by machine learning algorithm, providing a new method and idea for the ecological risk assessment of combined contaminated soil.
RESUMO
Lipid-based nanoparticles (LBNPs) are an important tool for the delivery of a diverse set of drug cargoes, including small molecules, oligonucleotides, and proteins and peptides. Despite their development over the past several decades, this technology is still hindered by issues with the manufacturing processes leading to high polydispersity, batch-to-batch and operator-dependent variability, and limits to the production volumes. To overcome these issues, the use of microfluidic techniques in the production of LBNPs has sharply increased over the past two years. Microfluidics overcomes many of the pitfalls seen with conventional production methods, leading to reproducible LBNPs at lower costs and higher yields. In this review, the use of microfluidics in the preparation of various types of LBNPs, including liposomes, lipid nanoparticles, and solid lipid nanoparticles for the delivery of small molecules, oligonucleotides, and peptide/protein drugs is summarized. Various microfluidic parameters, as well as their effects on the physicochemical properties of LBNPs, are also discussed.
RESUMO
BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a common metabolic liver disease worldwide. It has been proven that aescin (Aes), a bioactive compound derived from the ripe dried fruit of Aesculus chinensis Bunge, has a number of physiologically active properties like anti-inflammatory and anti-edema, however it has not been investigated as a potential solution for NAFLD. PURPOSE: This study's major goal was to determine whether Aes can treat NAFLD and the mechanism underlying its therapeutic benefits. METHODS: We constructed HepG2 cell models in vitro that were affected by oleic and palmitic acids, as well as in vivo models for acute lipid metabolism disorder caused by tyloxapol and chronic NAFLD caused by high-fat diet. RESULTS: We discovered that Aes could promote autophagy, activate the Nrf2 pathway, and ameliorate lipid accumulation and oxidative stress both in vitro and in vivo. Nevertheless, in Autophagy-related proteins 5 (Atg5) and Nrf2 knockout mice, Aes lost its curative impact on NAFLD. Computer simulations show that Aes might interact with Keap1, which might allow Aes to increase Nrf2 transfer into the nucleus and perform its function. Importantly, Aes's stimulation of autophagy in the liver was hampered in Nrf2 knockout mice. This suggested that the impact of Aes in inducing autophagy may be connected to the Nrf2 pathway. CONCLUSION: We first discovered Aes's regulating effects on liver autophagy and oxidative stress in NAFLD. And we found Aes may combine the Keap1 and regulate autophagy in the liver by affecting Nrf2 activation to exert its protective effect.
Assuntos
Antioxidantes , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Escina/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Autofagia , Camundongos Knockout , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: NAFLD is a liver disease that is caused by liver damage or extreme lipid deposition but not alcohol. Nrf2 could mediate resistance to oxidative stress injury. Autophagy can degrade metabolic waste and accumulated toxic endogenous substances. Pterostilbene (PTE) is an active compound extracted from blueberry, and grape, that exhibits many biological effects, such as antiinflammation and antitumor. PURPOSE: This study provides a mechanism of PTE affecting on oxidative stress and autophagy in NAFLD mice. Tyloxapol, oil acid (OA) and palmitic acid (PA) were used to induce lipid accumulation in mice and HepG2 cells. METHODS: Western blotting, CRISPR/Cas 9 and other molecular biological approaches were applied to explore the mechanisms of PTE effected on NAFLD. RESULTS: PTE pretreatment effectively reduced the lipid accumulation in OA and PA induced HepG2 cells and tyloxapol induced mice, and significantly promoted the expression of nNrf2, PPAR-α and HO-1, and AMPK activity, but inhibited the expression of mTORC 1 and SREBP-1c. PTE activated phosphatidylinositide 3-kinase (PI3K) and proteins in the autophagy-related gene (ATG) family, and promoted the transformation of LC3â to LC3â ¡ which indicated the activation of autophagy, however, these effects were abolished after Nrf2 knockout. CONCLUSION: PTE effectively alleviated oxidative stress damage induced by excessive lipid accumulation in hepatocytes, thus promoting the metabolism and decomposition of fatty acids to improve NAFLD.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Estresse Oxidativo , Autofagia , Ácidos Graxos , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: Carbon tetrachloride (CCl4) is highly toxic to animal liver and is a major contributor to liver injury. Gomphrena globosa L. (GgL) is an edible plant with anti-inflammation and antioxidation properties. The aim of this study was to investigate the potential therapeutic effects of GgL on liver injury. METHODS AND RESULTS: A model of chronic liver injury in mice was established by intraperitoneal injection of CCl4 (0.4 mL/kg) for 3 weeks, and the mice were treated intraperitoneally with different concentrations of GgL crude extract (GgCE; 100, 200, 300 mg/kg) or Bifendatatum (Bif; 20 mg/kg) in the last 2 weeks. The results showed that GgCE treatment alleviated the liver injury, improved the pathological changes caused by CCl4 on the mice liver, and enhance the antioxidant capacity. We also found that GgCE increased the expression of antioxidant stress related proteins, decreased the phosphorylation levels of autophagy related proteins PI3K and mTOR, and decreased the expression of LC3 II and P62 proteins. CONCLUSION: These results suggest that GgCE alleviated CCl4-induced chronic liver injury in mice by activating antioxidant signaling pathways and promoting autophagy, indicating a potential therapeutic effect of GgCE on liver injury.
Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Fígado/metabolismo , Transdução de Sinais , Tetracloreto de Carbono/farmacologia , Autofagia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Estresse OxidativoRESUMO
PURPOSE: To compare the absorbable and nonabsorbable suture knots on the tendon on bone-to-tendon healing during the early phase in a rat rotator cuff tear (RCT) model. METHODS: Fifty-two male Sprague-Dawley rats (10 weeks old; mean weight, 380 g) were used in this study, and 51 of them were randomly assigned into three groups: absorbable suture group (ASG, n = 22), nonabsorbable suture group (NSG, n = 22), and sham surgery group (SSG, n = 7), and the remaining rat was used to take surgical pictures. Bilateral supraspinatus tendon tears were created and repaired immediately in ASG and NSG. Three rats from ASG and NSG were killed for Western blot and histological evaluation at 3 days, 1 week, and 4 weeks after surgery. At 4 weeks, four rats from each group were killed for biomechanical test, and three rats from SSG were used for histological evaluation. RESULTS: Absorbable suture knots on the tendon completely degraded at 4 weeks. However, nonabsorbable suture knots remained intact between the tendon and articular side. ASG showed a stronger inflammatory reaction at 3 days and 1 week, but a weaker reaction at 4 weeks as confirmed by gross observation and Western blot. Besides, ASG showed superior biomechanical properties in terms of maximum load to failure and stiffness at 4 weeks. Modified Bonar score revealed superior maturity for tissue healing in ASG to that in NSG at 4 weeks. Furthermore, inferior bone-to-tendon interface and weakest link formation were observed in NSG on histologic images. CONCLUSION: Absorbable suture knots on the tendon contributed to better mechanical properties compared with the nonabsorbable one after rotator cuff repair.
Assuntos
Lesões do Manguito Rotador , Manguito Rotador , Masculino , Ratos , Animais , Manguito Rotador/cirurgia , Manguito Rotador/patologia , Ratos Sprague-Dawley , Lesões do Manguito Rotador/cirurgia , Lesões do Manguito Rotador/patologia , Tendões/cirurgia , Suturas/efeitos adversos , Fenômenos BiomecânicosRESUMO
It is inevitable that scar formation occurs between the spinal dura and surrounding tissues after laminectomy. While extensive epidural fibrosis, which results in limited nerve root activity and severe pain, is the main cause of postoperative failed-back surgery syndrome. Novel biomaterial loading effective drugs based on reasonable design are eagerly needed for the safe and effective prevention of epidural adhesions. We filtrated a suitable dose of pirfenidone (PFD) to load hyaluronic acid methacryloyl (HAMA) hydrogel in vitro. And then, we compare PFD-loaded HAMA hydrogel with only using PFD or HAMA hydrogels after laminectomy by in vivo studies in rats. We describe a safe and efficient anti-adhesive PFD-loaded HAMA hydrogel that prevents epidural fibrosis through the stable and sustained release of PFD. It was shown that the PFD-loaded HAMA hydrogel effectively inhibited cell penetration and suppressed collagen I/III expression. Thus, it effectively prevented the formation of adhesions through pharmacological and physical processes. The PFD-loaded HAMA hydrogel can effectively prevent adhesion formation in both pharmacological and physical barrier effects.
Assuntos
Ácido Hialurônico , Hidrogéis , Ratos , Animais , Ácido Hialurônico/farmacologia , Laminectomia/efeitos adversos , Espaço Epidural/patologia , Aderências Teciduais/prevenção & controle , FibroseRESUMO
To let the general public,regardless of gender,age,career and education background,understand the core concept of hospice and palliative care,practice in their lives,and then spread to and serve as many people as possible,the hospice and palliative care team of Peking Union Medical College Hospital established the professional hospice and palliative care training platform for volunteers in 2021.This article reviews the training design,content,methods,and results of the platform.It is concluded that the platform has theory-based training design,logical and complete training content,suitable training method for volunteers,and satisfactory training results.The establishment of this hospice and palliative care training platform for volunteers has excellent feasibility.Efforts should be made to further explore the performance and long-term development strategy of the training platform.
Assuntos
Cuidados Paliativos na Terminalidade da Vida , Hospitais para Doentes Terminais , Humanos , Cuidados Paliativos , Voluntários/educaçãoRESUMO
Optical chirality plays a key role in optical biosensing and spin-selective optical field manipulation. However, the maximum optical intrinsic chirality, which is represented by near-unity circular dichroism (CD), is yet to be achieved in a wide bandwidth range based on nanostructures. Here, we utilize dielectric bilayer polyatomic metasurfaces to realize the maximum optical intrinsic chirality over a wide bandwidth range. The CD efficiency of the two designed metasurfaces with opposite chirality is 99.9% at 1350 nm and over 98% from 1340 nm to 1361 nm. Our work provides a straightforward and powerful method for the realization of maximum optical intrinsic chirality, which has great potential in spin-selective optical wave manipulation.
Assuntos
Nanoestruturas , Dicroísmo CircularRESUMO
BACKGROUND: Spinal cord injury is the most common problem encountered during spinal surgery. After the initial trauma, the disruption of the blood-brain barrier and subsequent microglia activation result in extensive inflammatory responses. Inflammasomes are large protein complexes that are essential during inflammation. One of the most studied inflammasome components, nucleotide binding oligomerization domain-like receptor protein 3 (NLRP; nucleotide binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing 3), is widely expressed in the central nervous system. Previous research has shown that microRNA-451 (miR-451) might play a role in regulating inflammatory conditions. METHODS: Using bioinformatics analysis, we found that NLRP3 is a direct target of miR-451. This in silico prediction was confirmed using dual-luciferase reporter gene assays. To further demonstrate that miR-451 influenced microglial NLRP3 production, we activated microglial cells with lipopolysaccharides. RESULTS: Activating microglial cells with lipopolysaccharides resulted in the production of NLRP3 inflammasomes and the secretion of the proinflammatory cytokines interleukin-1ß and interleukin-18. We were able to demonstrate that overexpression of miR-451 suppressed this NLRP3-induced proinflammatory cascade of events. CONCLUSIONS: Our findings have highlighted the potential anti-inflammatory role of miR-451 in reducing the secondary neuronal damage after spinal cord injury.
Assuntos
Inflamassomos , MicroRNAs , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Ratos , Citocinas/metabolismo , Inflamassomos/genética , Inflamassomos/metabolismo , Microglia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismoRESUMO
Overdose of acetaminophen (APAP) is currently one of the main causes of hepatoxicity and acute liver injury, which is often linked to oxidative stress. Phellinus linteus polysaccharides (Phps) have shown many hepatoprotective effects, however, the mechanism of Phps on APAP-induced acute liver injury has not been further elucidated. The aim of this study is to investigate the underlying mechanism of Phps to acute liver injury. The expression of AMPK/Nrf2 and autophagy were detected using western blot. The results indicated that Phps treatment effectively alleviated APAP-induced acute liver injury by reducing alanine transaminase (ALT) and aspartate aminotransferase (AST) levels in serum. Phps significantly attenuated myeloperoxidase (MPO) activity and glutathione (GSH) depletion. Meanwhile, Phps remarkably alleviated histopathological changes. Further research found that Phps promoted AMPK pathway and up-regulated nuclear factor erythroid-2-related factor (Nrf2) transported into nucleus, and elevated heme oxygenase 1(HO-1), glutamate-cysteine ligase catalytic (GCLC), glutamate cysteine ligase modifier (GCLM) and quinone oxidoreductase (NQO1). Additionally, Phps apparently facilitated the expression of autophagy proteins (ATG3, ATG5, ATG7, and ATG12). However, the protection of pathologic changes was nearly absent in Nrf2-/- mice. Phps have potential in preventing oxidative stress in APAP-induced acute liver injury.
Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Animais , Camundongos , Acetaminofen/toxicidade , Alanina Transaminase/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Aspartato Aminotransferases/metabolismo , Basidiomycota , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Peroxidase/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Quinonas/metabolismo , Quinonas/farmacologia , Transdução de SinaisRESUMO
Unmanned Aerial Vehicles, commonly known as drones, have been widely used in transmission line inspection and traffic patrolling due to their flexibility and environmental adaptability. To take advantage of drones and overcome their limited endurance, the patrolling tasks are parallelized by concurrently dispatching the drones from a truck which travels on the road network to the nearby task arc. The road network considered in previous research is undirected; however, in reality, the road network usually contains unidirectional arcs, i.e., the road network is asymmetric. Hence, we propose an asymmetric coordinated vehicle-drones arc routing mode for traffic patrolling. In this mode, a truck travelling on an asymmetric road network with multiple drones needs to patrol multiple task arcs, and the drones can be launched and recovered at certain nodes on the truck route, making it possible for drones and the truck to patrol the task in parallel. The total patrol time is the objective function that needs to be minimized given the time limit constraints of drones. The whole problem can be considered as an asymmetric arc routing problem of coordinating a truck and multiple drones. To solve this problem, a large-scale neighborhood search with simulated annealing algorithm (LNS-SA) is proposed. Finally, extensive computation experiments and a real case are carried out. The experimental results show the efficiency of the proposed algorithm. Moreover, a detailed sensitivity analysis is performed on several drone-parameters of interest.