Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
1.
J Org Chem ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814709

RESUMO

A gold-catalyzed oxidative rearrangement of propargyl alcohols, derived from commercially available cyclohex-2-en-1-ones and alkynes, was successfully developed for the efficient synthesis of seven-membered rings. Thorough investigations were conducted to optimize the reaction conditions and evaluate its compatibility with various functional groups. Additionally, this methodology was applied to the formal total synthesis of guanacastepene A, demonstrating its practical utility in complex natural product synthesis. This versatile and efficient approach opens up new possibilities for the construction of diverse seven-membered ring systems, providing valuable building blocks for further exploration in drug discovery and the synthesis of intricate molecules.

2.
Phys Chem Chem Phys ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780456

RESUMO

Myeloid cell leukemia 1 (Mcl1), a critical protein that regulates apoptosis, has been considered as a promising target for antitumor drugs. The conventional pharmacophore screening approach has limitations in conformation sampling and data mining. Here, we offered an innovative solution to identify Mcl1 inhibitors with molecular dynamics-refined pharmacophore and machine learning methods. Considering the safety and druggability of FDA-approved drugs, virtual screening of the database was performed to discover Mcl1 inhibitors, and the hit was subsequently validated via TR-FRET, cytotoxicity, and flow cytometry assays. To reveal the binding characteristics shared by the hit and a typical Mcl1 selective inhibitor, we employed quantum mechanics and molecular mechanics (QM/MM) calculations, umbrella sampling, and metadynamics in this work. The combined studies suggested that fluvastatin had promising cell inhibitory potency and was suitable for further investigation. We believe that this research will shed light on the discovery of novel Mcl1 inhibitors that can be used as a supplemental treatment against leukemia and provide a possible method to improve the accuracy of drug repurposing with limited computational resources while balancing the costs of experimentation well.

3.
J Immunother Cancer ; 12(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724465

RESUMO

BACKGROUND: CD276 (B7-H3), a pivotal immune checkpoint, facilitates tumorigenicity, invasiveness, and metastasis by escaping immune surveillance in a variety of tumors; however, the underlying mechanisms facilitating immune escape in esophageal squamous cell carcinoma (ESCC) remain enigmatic. METHODS: We investigated the expression of CD276 in ESCC tissues from patients by using immunohistochemistry (IHC) assays. In vivo, we established a 4-nitroquinoline 1-oxide (4NQO)-induced CD276 knockout (CD276wKO) and K14cre; CD276 conditional knockout (CD276cKO) mouse model of ESCC to study the functional role of CD276 in ESCC. Furthermore, we used the 4NQO-induced mouse model to evaluate the effects of anti-CXCL1 antibodies, anti-Ly6G antibodies, anti-NK1.1 antibodies, and GSK484 inhibitors on tumor growth. Moreover, IHC, flow cytometry, and immunofluorescence techniques were employed to measure immune cell proportions in ESCC. In addition, we conducted single-cell RNA sequencing analysis to examine the alterations in tumor microenvironment following CD276 depletion. RESULTS: In this study, we elucidate that CD276 is markedly upregulated in ESCC, correlating with poor prognosis. In vivo, our results indicate that depletion of CD276 inhibits tumorigenesis and progression of ESCC. Furthermore, conditional knockout of CD276 in epithelial cells engenders a significant downregulation of CXCL1, consequently reducing the formation of neutrophil extracellular trap networks (NETs) via the CXCL1-CXCR2 signaling axis, while simultaneously augmenting natural killer (NK) cells. In addition, overexpression of CD276 promotes tumorigenesis via increasing NETs' formation and reducing NK cells in vivo. CONCLUSIONS: This study successfully elucidates the functional role of CD276 in ESCC. Our comprehensive analysis uncovers the significant role of CD276 in modulating immune surveillance mechanisms in ESCC, thereby suggesting that targeting CD276 might serve as a potential therapeutic approach for ESCC treatment.


Assuntos
Antígenos B7 , Quimiocina CXCL1 , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Receptores de Interleucina-8B , Animais , Carcinoma de Células Escamosas do Esôfago/imunologia , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Camundongos , Humanos , Receptores de Interleucina-8B/metabolismo , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/patologia , Antígenos B7/metabolismo , Quimiocina CXCL1/metabolismo , Armadilhas Extracelulares/metabolismo , Evasão Tumoral , Feminino , Masculino , Camundongos Knockout , Microambiente Tumoral
4.
Bioorg Chem ; 147: 107314, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581967

RESUMO

The identification of novel 4-hydroxy-2-quinolone-3-carboxamide antibacterials with improved properties is of great value for the control of antibiotic resistance. In this study, a series of N-heteroaryl-substituted 4-hydroxy-2-quinolone-3-carboxamides were developed using the bioisosteric replacement strategy. As a result of our research, we discovered the two most potent GyrB inhibitors (WBX7 and WBX18), with IC50 values of 0.816 µM and 0.137 µM, respectively. Additional antibacterial activity screening indicated that WBX18 possesses the best antibacterial activity against MRSA, VISA, and VRE strains, with MIC values rangingbetween0.5and 2 µg/mL, which was 2 to over 32 times more potent than that of vancomycin. In vitro safety and metabolic stability, as well as in vivo pharmacokinetics assessments revealed that WBX18 is non-toxic to HUVEC and HepG2, metabolically stable in plasma and liver microsomes (mouse), and displays favorable in vivo pharmacokinetic properties. Finally, docking studies combined with molecular dynamic simulation showed that WBX18 could stably fit in the active site cavity of GyrB.


Assuntos
Antibacterianos , DNA Girase , Testes de Sensibilidade Microbiana , Inibidores da Topoisomerase II , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Humanos , DNA Girase/metabolismo , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/síntese química , Relação Estrutura-Atividade , Animais , Estrutura Molecular , Relação Dose-Resposta a Droga , Camundongos , Células Hep G2 , Simulação de Acoplamento Molecular , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/química
5.
Int J Oral Sci ; 16(1): 29, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622125

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is characterized by high recurrence or distant metastases rate and the prognosis is challenging. There is mounting evidence that tumor-infiltrating B cells (TIL-Bs) have a crucial, synergistic role in tumor control. However, little is known about the role TIL-Bs play in immune microenvironment and the way TIL-Bs affect the outcome of immune checkpoint blockade. Using single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database, the study identified distinct gene expression patterns in TIL-Bs. HNSCC samples were categorized into TIL-Bs inhibition and TIL-Bs activation groups using unsupervised clustering. This classification was further validated with TCGA HNSCC data, correlating with patient prognosis, immune cell infiltration, and response to immunotherapy. We found that the B cells activation group exhibited a better prognosis, higher immune cell infiltration, and distinct immune checkpoint levels, including elevated PD-L1. A prognostic model was also developed and validated, highlighting four genes as potential biomarkers for predicting survival outcomes in HNSCC patients. Overall, this study provides a foundational approach for B cells-based tumor classification in HNSCC, offering insights into targeted treatment and immunotherapy strategies.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Prognóstico , Biomarcadores , Neoplasias de Cabeça e Pescoço/terapia , Análise de Célula Única , Microambiente Tumoral
6.
Acta Pharm Sin B ; 14(4): 1742-1758, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572099

RESUMO

Mitochondrial membrane remodeling can trigger the release of mitochondrial DNA (mtDNA), leading to the activation of cellular oxidative stress and immune responses. While the role of mitochondrial membrane remodeling in promoting inflammation in hepatocytes is well-established, its effects on tumors have remained unclear. In this study, we designed a novel Pt(IV) complex, OAP2, which is composed of oxaliplatin (Oxa) and acetaminophen (APAP), to enhance its anti-tumor effects and amplify the immune response. Our findings demonstrate that OAP2 induces nuclear DNA damage, resulting in the production of nuclear DNA. Additionally, OAP2 downregulates the expression of mitochondrial Sam50, to promote mitochondrial membrane remodeling and trigger mtDNA secretion, leading to double-stranded DNA accumulation and ultimately synergistically activating the intracellular cGAS-STING pathway. The mitochondrial membrane remodeling induced by OAP2 overcomes the limitations of Oxa in activating the STING pathway and simultaneously promotes gasdermin-D-mediated cell pyroptosis. OAP2 also promotes dendritic cell maturation and enhances the quantity and efficacy of cytotoxic T cells, thereby inhibiting cancer cell proliferation and metastasis. Briefly, our study introduces the first novel small-molecule inhibitor that regulates mitochondrial membrane remodeling for active immunotherapy in anti-tumor research, which may provide a creative idea for targeting organelle in anti-tumor therapy.

7.
Nat Commun ; 15(1): 2818, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561369

RESUMO

Interplay between innate and adaptive immune cells is important for the antitumor immune response. However, the tumor microenvironment may turn immune suppressive, and tumor associated macrophages are playing a role in this transition. Here, we show that CD276, expressed on tumor-associated macrophages (TAM), play a role in diminishing the immune response against tumors. Using a model of tumors induced by N-butyl-N-(4-hydroxybutyl) nitrosamine in BLCA male mice we show that genetic ablation of CD276 in TAMs blocks efferocytosis and enhances the expression of the major histocompatibility complex class II (MHCII) of TAMs. This in turn increases CD4 + and cytotoxic CD8 + T cell infiltration of the tumor. Combined single cell RNA sequencing and functional experiments reveal that CD276 activates the lysosomal signaling pathway and the transcription factor JUN to regulate the expression of AXL and MerTK, resulting in enhanced efferocytosis in TAMs. Proving the principle, we show that simultaneous blockade of CD276 and PD-1 restrain tumor growth better than any of the components as a single intervention. Taken together, our study supports a role for CD276 in efferocytosis by TAMs, which is potentially targetable for combination immune therapy.


Assuntos
Macrófagos Associados a Tumor , Neoplasias da Bexiga Urinária , Animais , Masculino , Camundongos , Eferocitose , Evasão da Resposta Imune , Macrófagos/metabolismo , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Neoplasias da Bexiga Urinária/metabolismo
8.
Cancer Immunol Immunother ; 73(6): 97, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619620

RESUMO

Esophageal squamous cell carcinoma (ESCC) is characterized by molecular heterogeneity with various immune cell infiltration patterns, which have been associated with therapeutic sensitivity and resistance. In particular, dendritic cells (DCs) are recently discovered to be associated with prognosis and survival in cancer. However, how DCs differ among ESCC patients has not been fully comprehended. Recently, the advance of single-cell RNA sequencing (scRNA-seq) enables us to profile the cell types, states, and lineages in the heterogeneous ESCC tissues. Here, we dissect the ESCC tumor microenvironment at high resolution by integrating 192,078 single cells from 60 patients, including 4379 DCs. We then used Scissor, a method that identifies cell subpopulations from single-cell data that are associated bulk samples with genomic and clinical information, to stratify DCs into Scissorhi and Scissorlow subtypes. We applied the Scissorhi gene signature to stratify ESCC scRNAseq patient, and we found that PD-L1, TIGIT, PVR and IL6 ligand-receptor-mediated cell interactions existed mainly in Scissorhi patients. Finally, based on the Scissor results, we successfully developed a validated prognostic risk model for ESCC and further validated the reliability of the risk prediction model by recruiting 40 ESCC clinical patients. This information highlights the importance of these genes in assessing patient prognosis and may help in the development of targeted or personalized therapies for ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Prognóstico , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/genética , Reprodutibilidade dos Testes , Imunidade , Células Dendríticas , Microambiente Tumoral/genética
9.
Comput Biol Chem ; 110: 108057, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581840

RESUMO

Virtual screening-based molecular similarity and fingerprint are crucial in drug design, target prediction, and ADMET prediction, aiding in identifying potential hits and optimizing lead compounds. However, challenges such as lack of comprehensive open-source molecular fingerprint databases and efficient search methods for virtual screening are prevalent. To address these issues, we introduce FaissMolLib, an open-source virtual screening tool that integrates 2.8 million compounds from ChEMBL and ZINC databases. Notably, FaissMolLib employs the highly efficient Faiss search algorithm, outperforming the Tanimoto algorithm in identifying similar molecules with its tighter clustering in scatter plots and lower mean, standard deviation, and variance in key molecular properties. This feature enables FaissMolLib to screen 2.8 million compounds in just 0.05 seconds, offering researchers an efficient, easily deployable solution for virtual screening on laptops and building unique compound databases. This significant advancement holds great potential for accelerating drug discovery efforts and enhancing chemical data analysis. FaissMolLib is freely available at http://liuhaihan.gnway.cc:80. The code and dataset of FaissMolLib are freely available at https://github.com/Superhaihan/FiassMolLib.


Assuntos
Algoritmos , Ligantes , Avaliação Pré-Clínica de Medicamentos/métodos , Software , Bases de Dados de Compostos Químicos , Descoberta de Drogas , Estrutura Molecular
10.
iScience ; 27(3): 109327, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38487015

RESUMO

Emerging studies have demonstrated the link between RNA modifications and various cancers, while the predictive value and functional mechanisms of RNA modification-related genes (RMGs) in esophageal squamous cell carcinoma (ESCC) remain unclear. Here we established a prognostic signature for ESCC based on five RMGs. The analysis of ESCC clinical samples further verified the prognostic power of the prognostic signature. Moreover, we found that the knockdown of NSUN6 promotes ESCC progression in vitro and in vivo, whereas the overexpression of NSUN6 inhibits the malignant phenotype of ESCC cells. Mechanically, NSUN6 mediated tRNA m5C modifications selectively enhance the translation efficiency of CDH1 mRNA in a codon dependent manner. Rescue assays revealed that E-cadherin is an essential downstream target that mediates NSUN6's function in the regulation of ESCC progression. These findings offer additional insights into the link between ESCC and RMGs, as well as provide potential strategies for ESCC management and therapy.

11.
J Med Chem ; 67(6): 4739-4756, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38488882

RESUMO

Cyclin-dependent kinase 9 (CDK9) is a member of the transcription CDK subfamily. In this work, we preliminarily demonstrated the feasibility of CDK9 as a potent target of treatment for colorectal cancer, and a series of novel CDK9 inhibitors were rationally designed and synthesized based on the structure of AZD5438 (a pan CDKs inhibitor reported by AstraZeneca). A novel selective CDK9 inhibitor named CLZX-205, which possessed significant CDK9 inhibitory activity (IC50 = 2.9 nM) with acceptable pharmacokinetic properties and antitumor efficacy in vitro and in vivo, was developed. Research on the mechanism indicated that CLZX-205 could induce apoptosis in the HCT116 cell line by inhibiting phosphorylation of RNA polymerase II at Ser2, which resulted in the inhibition of apoptosis-related genes and proteins expression, and these results were validated at the cellular and tumor tissue levels. Currently, CLZX-205 is undergoing further research as a promising candidate for CRC treatment.


Assuntos
Apoptose , Quinase 9 Dependente de Ciclina , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Fosforilação , RNA Polimerase II/metabolismo , Linhagem Celular Tumoral
12.
RSC Adv ; 14(13): 9314-9325, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38510486

RESUMO

Arctigenin, a natural product with diverse pharmacological activities, can inhibit cell proliferation and survival and has shown promising potential in cancer research. In this study, we designed a series of arctigenin derivatives with HDAC inhibitory activity based on the synergistic effects between HDAC inhibitors and arctigenin. Among them, compound B7 exhibited significantly higher antiproliferative activity in the MV411 cell line compared to the positive control, tucidinostat. Additionally, enzymatic activity testing was performed with compound B7. Further mechanistic studies indicated that compound B7 induced apoptosis through the Caspase-3 pathway in MV411 cells and enhanced histone acetylation levels in the MV411 cell line. These findings highlight the broad potential application of these arctigenin derivatives in cancer therapy.

13.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396931

RESUMO

A series of novel echinatin derivatives with 1,3,4-oxadiazole moieties were designed and synthesized. Most of the newly synthesized compounds exhibited moderate antiproliferative activity against the four cancer cell lines. Notably, Compound T4 demonstrated the most potent activity, with IC50 values ranging from 1.71 µM to 8.60 µM against the four cancer cell lines. Cell colony formation and wound healing assays demonstrated that T4 significantly inhibited cell proliferation and inhibited migration. We discovered that T4 exhibited moderate binding affinity with the c-KIT protein through reverse docking. The results were effectively validated through subsequent molecular docking and c-KIT enzyme activity assays. In addition, Western blot analysis revealed that T4 inhibits the phosphorylation of downstream proteins of c-KIT. The results provide valuable inspiration for exploring novel insights into the design of echinatin-related hybrids as well as their potential application as c-KIT inhibitors to enhance the efficacy of candidates.


Assuntos
Antineoplásicos , Chalconas , Neoplasias , Oxidiazóis , Humanos , Relação Estrutura-Atividade , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Proliferação de Células , Estrutura Molecular , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga
14.
Phys Chem Chem Phys ; 26(11): 8767-8774, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38420672

RESUMO

Carbonic anhydrase IX (CA IX) is a subtype of the human carbonic anhydrase (hCA) family and exhibits high expression in various solid tumors, rendering it a promising target for tumor therapy. Currently, marketed carbonic anhydrase inhibitors (CAIs) are primarily composed of sulfonamides derivatives, which may have impeded their potential for further expansion. Therefore, we have developed a structure-based virtual screening approach to explore novel CAIs exhibiting distinctive structures and anti-tumor potential in the FDA database. In vitro experiments demonstrated that 3-pyridinemethanol (0.42 µM), procodazole (8.35 µM) and pamidronic acid (8.51 µM) exhibited inhibitory effects on CA IX activity. The binding stability and interaction mode between the CA IX and the hit compounds are further investigated through molecular dynamics simulations and binding free energy calculations. Furthermore, the ADME/Tox prediction results indicated that these compounds exhibited favorable pharmacological properties and minimal toxic side effects. Our study successfully applied computational strategies to discover three non-sulfonamide inhibitors of carbonic anhydrase IX (CA IX) that demonstrate inhibitory activity in vitro. These findings have significant implications for the development of CA IX inhibitors and anti-tumor drugs, contributing to their progress in the field.


Assuntos
Anidrases Carbônicas , Neoplasias , Humanos , Anidrase Carbônica IX/química , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Relação Estrutura-Atividade , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/uso terapêutico , Neoplasias/tratamento farmacológico , Sulfonamidas/química , Sulfanilamida , Estrutura Molecular
15.
J Am Chem Soc ; 146(12): 8508-8519, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38382542

RESUMO

Tricomponent cobalt(salen)-catalyzed carbofunctionalization of unsaturated substrates by radical-polar crossover has the potential to streamline access to broad classes of heteroatom-functionalized synthetic targets, yet the reaction platform has remained elusive, despite the well-developed analogous hydrofunctionalizations mediated by high-valent alkylcobalt intermediates. We report herein the development of a cobalt(salen) catalytic system that enables carbofunctionalization. The reaction entails a tricomponent decarboxylative 1,4-carboamination of dienes and provides a direct route to aromatic allylic amines by obviating preformed allylation reagents and protection of oxidation-sensitive aromatic amines. The catalytic system merges acridine photocatalysis with cobalt(salen)-catalyzed regioselective 1,4-carbofunctionalization that facilitates the crossover of the radical and polar phases of the tricomponent coupling process, revealing critical roles of the reactants, as well as ligand effects and the nature of the formal high-valent alkylcobalt species on the chemo- and regioselectivity.

16.
J Med Chem ; 67(4): 2986-3003, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38347756

RESUMO

Although ß2-agonists are crucial for treatment of chronic respiratory diseases, optimizing ß2-agonistic activity and selectivity remains essential for achieving favorable therapeutic outcomes. A structure-based molecular design workflow was employed to discover a novel class of ß2 agonists featuring a 5-hydroxy-4H-benzo[1,4]oxazin-3-one scaffold, which potently stimulated ß2 adrenoceptors (ß2-ARs). Screening for the ß2-agonistic activity and selectivity led to the identification of compound A19 (EC50 = 3.7 pM), which functioned as a partial ß2-agonist in HEK-293 cells containing endogenous ß2-ARs. Compound A19 exhibited significant relaxant effects, rapid onset time (Ot50 = 2.14 min), and long duration of action (>12 h) on isolated guinea pig tracheal strips, as well as advantageous pharmacokinetic characteristics in vivo, rendering A19 suitable for inhalation administration. Moreover, A19 suppressed the upregulation of inflammatory cytokines and leukocytes and improved lung function in a rat model of COPD, thereby indicating that A19 is a potential ß2 agonist candidate for further study.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2 , Receptores Adrenérgicos beta 2 , Humanos , Ratos , Animais , Cobaias , Células HEK293 , Agonistas de Receptores Adrenérgicos beta 2/farmacologia
17.
J Org Chem ; 89(5): 3331-3344, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38363745

RESUMO

A gold(I)-catalyzed hydroamination/cycloisomerization cascade reaction was developed to yield indolizino[8,7-b]indole and indolo[2,3-a]-quinolizine derivatives from 2-ethynyltryptamides. The optimal conditions were determined by condition screening, and the functional group tolerances of these reactions were explored based on synthetic substrates. An insight into the explanation on the selectivity of the ring closure was obtained by density functional theory calculations. A plausible mechanism for the cascade reactions was proposed. Derivatization of the indolizino[8,7-b]indole and total synthesis of nauclefidine demonstrated the practicality of this strategy.

18.
RSC Med Chem ; 15(2): 492-505, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38389880

RESUMO

Invasive fungal infections, with high morbidity and mortality, have become one of the most serious threats to human health. There are a few kinds of clinical antifungal drugs but large amounts of them are used, so there is an urgent need for a new structural type of antifungal drug. In this study, we carried out three rounds of structural optimisation and modification of the compound YW-01, which was obtained from the preliminary screening of the group, by using the strategy of scaffold hopping. A series of novel phenylpyrimidine CYP51 inhibitors were designed and synthesised. In vitro antifungal testing showed that target compound C6 exhibited good efficacy against seven common clinically susceptible strains, which was significantly superior to the clinical first-line drug fluconazole. Subsequently in vitro tests on metabolic stability and cytotoxicity revealed that C6 was safe and stable for hepatic microsomal function. Finally, C6 warranted further exploration as a possible novel structural type of CYP51 inhibitor.

20.
Chin J Nat Med ; 22(1): 15-30, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38278556

RESUMO

Oleanolic acid (OA), a pentacyclic triterpenoid, exhibits a broad spectrum of biological activities, including antitumor, antiviral, antibacterial, anti-inflammatory, hepatoprotective, hypoglycemic, and hypolipidemic effects. Since its initial isolation and identification, numerous studies have reported on the structural modifications and pharmacological activities of OA and its derivatives. Despite this, there has been a dearth of comprehensive reviews in the past two decades, leading to challenges in subsequent research on OA. Based on the main biological activities of OA, this paper comprehensively summarized the modification strategies and structure-activity relationships (SARs) of OA and its derivatives to provide valuable reference for future investigations into OA.


Assuntos
Ácido Oleanólico , Triterpenos , Relação Estrutura-Atividade , Anti-Inflamatórios/farmacologia , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA