Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sci Adv ; 9(2): eadd8417, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36630507

RESUMO

Amphetamine (AMPH) is a psychostimulant that is commonly abused. The stimulant properties of AMPH are associated with its ability to increase dopamine (DA) neurotransmission. This increase is promoted by nonvesicular DA release mediated by reversal of DA transporter (DAT) function. Syntaxin 1 (Stx1) is a SNARE protein that is phosphorylated at Ser14 by casein kinase II. We show that Stx1 phosphorylation is critical for AMPH-induced nonvesicular DA release and, in Drosophila melanogaster, regulates the expression of AMPH-induced preference and sexual motivation. Our molecular dynamics simulations of the DAT/Stx1 complex demonstrate that phosphorylation of these proteins is pivotal for DAT to dwell in a DA releasing state. This state is characterized by the breakdown of two key salt bridges within the DAT intracellular gate, causing the opening and hydration of the DAT intracellular vestibule, allowing DA to bind from the cytosol, a mechanism that we hypothesize underlies nonvesicular DA release.


Assuntos
Dopamina , Sintaxina 1 , Animais , Anfetamina/farmacologia , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Drosophila melanogaster/metabolismo , Fosforilação , Sintaxina 1/genética , Sintaxina 1/metabolismo
2.
Mol Psychiatry ; 26(8): 4417-4430, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31796894

RESUMO

Reward modulates the saliency of a specific drug exposure and is essential for the transition to addiction. Numerous human PET-fMRI studies establish a link between midbrain dopamine (DA) release, DA transporter (DAT) availability, and reward responses. However, how and whether DAT function and regulation directly participate in reward processes remains elusive. Here, we developed a novel experimental paradigm in Drosophila melanogaster to study the mechanisms underlying the psychomotor and rewarding properties of amphetamine (AMPH). AMPH principally mediates its pharmacological and behavioral effects by increasing DA availability through the reversal of DAT function (DA efflux). We have previously shown that the phospholipid, phosphatidylinositol (4, 5)-bisphosphate (PIP2), directly interacts with the DAT N-terminus to support DA efflux in response to AMPH. In this study, we demonstrate that the interaction of PIP2 with the DAT N-terminus is critical for AMPH-induced DAT phosphorylation, a process required for DA efflux. We showed that PIP2 also interacts with intracellular loop 4 at R443. Further, we identified that R443 electrostatically regulates DA efflux as part of a coordinated interaction with the phosphorylated N-terminus. In Drosophila, we determined that a neutralizing substitution at R443 inhibited the psychomotor actions of AMPH. We associated this inhibition with a decrease in AMPH-induced DA efflux in isolated fly brains. Notably, we showed that the electrostatic interactions of R443 specifically regulate the rewarding properties of AMPH without affecting AMPH aversion. We present the first evidence linking PIP2, DAT, DA efflux, and phosphorylation processes with AMPH reward.


Assuntos
Anfetamina , Proteínas da Membrana Plasmática de Transporte de Dopamina , Anfetamina/farmacologia , Animais , Sítios de Ligação , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Drosophila melanogaster , Fosfatidilinositóis
3.
eNeuro ; 5(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29430519

RESUMO

Efficient clearance of dopamine (DA) from the synapse is key to regulating dopaminergic signaling. This role is fulfilled by DA transporters (DATs). Recent advances in the structural characterization of DAT from Drosophila (dDAT) and in high-resolution imaging of DA neurons and the distribution of DATs in living cells now permit us to gain a mechanistic understanding of DA reuptake events in silico. Using electron microscopy images and immunofluorescence of transgenic knock-in mouse brains that express hemagglutinin-tagged DAT in DA neurons, we reconstructed a realistic environment for MCell simulations of DA reuptake, wherein the identity, population and kinetics of homology-modeled human DAT (hDAT) substates were derived from molecular simulations. The complex morphology of axon terminals near active zones was observed to give rise to large variations in DA reuptake efficiency, and thereby in extracellular DA density. Comparison of the effect of different firing patterns showed that phasic firing would increase the probability of reaching local DA levels sufficiently high to activate low-affinity DA receptors, mainly owing to high DA levels transiently attained during the burst phase. The experimentally observed nonuniform surface distribution of DATs emerged as a major modulator of DA signaling: reuptake was slower, and the peaks/width of transient DA levels were sharper/wider under nonuniform distribution of DATs, compared with uniform. Overall, the study highlights the importance of accurate descriptions of extrasynaptic morphology, DAT distribution, and conformational kinetics for quantitative evaluation of dopaminergic transmission and for providing deeper understanding of the mechanisms that regulate DA transmission.


Assuntos
Axônios/metabolismo , Axônios/ultraestrutura , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Potenciais de Ação/fisiologia , Animais , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/ultraestrutura , Humanos , Camundongos Transgênicos , Simulação de Dinâmica Molecular , Conformação Proteica , Transmissão Sináptica/fisiologia , Técnicas de Cultura de Tecidos
4.
Sci Rep ; 7(1): 5399, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710426

RESUMO

Dopamine transporter (DAT) has been shown to accumulate in filopodia in neurons and non-neuronal cells. To examine the mechanisms of DAT filopodial targeting, we used quantitative live-cell fluorescence microscopy, and compared the effects of the DAT inhibitor cocaine and its fluorescent analog JHC1-64 on the plasma membrane distribution of wild-type DAT and two non-functional DAT mutants, R60A and W63A, that do not accumulate in filopodia. W63A did not bind JHC1-64, whereas R60A did, although less efficiently compared to the wild-type DAT. Molecular dynamics simulations predicted that R60A preferentially assumes an outward-facing (OF) conformation through compensatory intracellular salt bridge formation, which in turn favors binding of cocaine. Imaging analysis showed that JHC1-64-bound R60A mutant predominantly localized in filopodia, whereas free R60A molecules were evenly distributed within the plasma membrane. Cocaine binding significantly increased the density of R60A, but not that of W63A, in filopodia. Further, zinc binding, known to stabilize the OF state, also increased R60A concentration in filopodia. Finally, amphetamine, that is thought to disrupt DAT OF conformation, reduced the concentration of wild-type DAT in filopodia. Altogether, these data indicate that OF conformation is required for the efficient targeting of DAT to, and accumulation in, filopodia.


Assuntos
Anfetamina/farmacologia , Cloretos/farmacologia , Cocaína/farmacologia , Dextroanfetamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Compostos de Zinco/farmacologia , Anfetamina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Cloretos/metabolismo , Cocaína/análogos & derivados , Cocaína/metabolismo , Dextroanfetamina/metabolismo , Dopamina/metabolismo , Dopamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Expressão Gênica , Genes Reporter , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Conformação Proteica , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Pseudópodes/ultraestrutura , Compostos de Zinco/metabolismo
5.
Biochem J ; 449(1): 61-8, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22978431

RESUMO

pLGICs (pentameric ligand-gated ion channels) are a family of structurally homologous cation and anion channels involved in neurotransmission. Cation-selective members of the pLGIC family are typically inhibited by general anaesthetics, whereas anion-selective members are potentiated. GLIC is a prokaryotic cation pLGIC and can be inhibited by clinical concentrations of general anaesthetics. The introduction of three mutations, Y221A (Y-3'A), E222P (E-2'P) and N224R (N0'R), at the selectivity filter and one, A237T (A13'T), at the hydrophobic gate, converted GLIC into an anion channel. The mutated GLIC (GLIC4) became insensitive to the anaesthetics propofol and etomidate, as well as the channel blocker picrotoxin. MD (molecular dynamics) simulations revealed changes in the structure and dynamics of GLIC4 in comparison with GLIC, particularly in the tilting angles of the pore-lining helix [TM2 (transmembrane helix 2)] that consequently resulted in different pore radius and hydration profiles. Propofol binding to an intra-subunit site of GLIC shifted the tilting angles of TM2 towards closure at the hydrophobic gate region, consistent with propofol inhibition of GLIC. In contrast, the pore of GLIC4 was much more resilient to perturbation from propofol binding. The present study underscores the importance of pore dynamics and conformation to anaesthetic effects on channel functions.


Assuntos
Anestésicos/farmacologia , Canais Iônicos de Abertura Ativada por Ligante/química , Sequência de Aminoácidos , Animais , Canais de Cloreto/química , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Feminino , Íons/metabolismo , Canais Iônicos de Abertura Ativada por Ligante/genética , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Propofol/farmacologia , Ligação Proteica/genética , Xenopus laevis
6.
J Biol Chem ; 285(47): 37060-9, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20807759

RESUMO

Claudins form paracellular pores at the tight junction in epithelial cells. Profound depletion of extracellular calcium is well known to cause loosening of the tight junction with loss of transepithelial resistance. However, moderate variations in calcium concentrations within the physiological range can also regulate transepithelial permeability. To investigate the underlying molecular mechanisms, we studied the effects of calcium on the permeability of claudin-2, expressed in an inducible MDCK I cell line. We found that in the physiological range, calcium acts as a reversible inhibitor of the total conductance and Na(+) permeability of claudin-2, without causing changes in tight junction structure. The effect of calcium is enhanced at low Na(+) concentrations, consistent with a competitive effect. Furthermore, mutation of an intrapore negatively charged binding site, Asp-65, to asparagine partially abrogated the inhibitory effect of calcium. This suggests that calcium competes with Na(+) for binding to Asp-65. Other polyvalent cations had similar effects, including La(3+), which caused severe and irreversible inhibition of conductance. Brownian dynamics simulations demonstrated that such inhibition can be explained if Asp-65 has a relatively high charge density, thus favoring binding of Ca(2+) over that of Na(+), reducing Ca(2+) permeation by inhibiting its dissociation from this site, and decreasing Na(+) conductance through repulsive electrostatic interaction with Ca(2+). These findings may explain why hypercalcemia inhibits Na(+) reabsorption in the proximal tubule of the kidney.


Assuntos
Cálcio/farmacologia , Permeabilidade da Membrana Celular , Claudinas/metabolismo , Sódio/metabolismo , Animais , Ligação Competitiva , Células Cultivadas , Cães , Eletrofisiologia , Células Epiteliais , Rim/citologia , Rim/metabolismo , Simulação de Dinâmica Molecular
7.
J Phys Chem B ; 113(19): 6964-70, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19419220

RESUMO

Anionic lipids and cholesterols (CHOL) are critical to the function of nicotinic acetylcholine receptors (nAChR). We investigated their interactions with an open- and closed-channel alpha4beta2 nAChR by over 10 ns molecular dynamics simulations in a ternary lipid mixture of 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC), 1-palmitoyl-2-oleoyl phosphatidic acid (POPA), and CHOL with a ratio of 3:1:1 (Haddadian et al., J. Phys. Chem. B 2008, 112, 13981). On average there were 65 and 74 interfacial lipids around the closed- and open-channel alpha4beta2 nAChR, respectively, in the equilibrated simulation systems. In the open-channel system, 42% of the interfacial POPA had acyl chains partially inserted into intra- or intersubunit cavities, as compared to only 7% in the closed-channel alpha4beta2. No CHOL was found in cavities within single subunits, though some CHOL infiltrated into the gaps between subunits. Because of its smaller headgroup, POPA could access some nonannular sites where POPC could not easily reach due to steric exclusion. Furthermore, POPA acted not only as an acceptor for hydrogen bonding (H bonding) as POPC did, but also as a donor through its hydroxyl group for H bonding with the backbone of the protein. The charged headgroup of POPA allowed the lipid to form stable salt bridges with conserved Arg and Lys residues at the interfaces of the transmembrane (TM) and extracellular (EC) or intracellular (IC) domains of the alpha4beta2. A higher number of salt bridges and hydrogen bonds (H bonds) between POPA and the alpha4beta2 nAChR were found in the open system than in the closed system, suggesting a potential role of POPA in the equilibrium between different channel states. Most interfacial POPA molecules showed lower order parameters than the bulk POPA due to the mixed effect of gauche defects, hydrophobic mismatch, and the lipid orientations near the magic angle. These unique properties enable the interfacial POPA to achieve what POPC cannot with regard to specific interactions with the protein, thereby making POPA essential for the function of nAChR.


Assuntos
Colesterol/metabolismo , Metabolismo dos Lipídeos , Modelos Moleculares , Receptores Nicotínicos/metabolismo , Adenosina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Colesterol/química , Glicerofosfolipídeos/química , Glicerofosfolipídeos/metabolismo , Lipídeos/química , Conformação Molecular , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Receptores Nicotínicos/química
8.
J Gen Physiol ; 133(1): 111-27, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19114638

RESUMO

Paracellular ion transport in epithelia is mediated by pores formed by members of the claudin family. The degree of selectivity and the molecular mechanism of ion permeation through claudin pores are poorly understood. By expressing a high-conductance claudin isoform, claudin-2, in high-resistance Madin-Darby canine kidney cells under the control of an inducible promoter, we were able to quantitate claudin pore permeability. Claudin-2 pores were found to be narrow, fluid filled, and cation selective. Charge selectivity was mediated by the electrostatic interaction of partially dehydrated permeating cations with a negatively charged site within the pore that is formed by the side chain carboxyl group of aspartate-65. Thus, paracellular pores use intrapore electrostatic binding sites to achieve a high conductance with a high degree of charge selectivity.


Assuntos
Cátions/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Permeabilidade da Membrana Celular , Células Cultivadas , Claudinas , Simulação por Computador , Cães , Canais Iônicos/química , Canais Iônicos/genética , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência , Eletricidade Estática
9.
J Phys Chem B ; 111(21): 5956-65, 2007 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-17487993

RESUMO

A simplified three-dimensional model ClC-0 chloride channel is constructed to couple the permeation of Cl- ions to the motion of a glutamate side chain that acts as the putative fast gate in the ClC-0 channel. The gate is treated as a single spherical particle attached by a rod to a pivot point. This particle moves in a one-dimensional arc under the influence of a bistable potential, which mimics the isomerization process by which the glutamate side chain moves from an open state (not blocking the channel pore) to a closed state (blocking the channel pore, at a position which also acts as a binding site for Cl- ions moving through the channel). A dynamic Monte Carlo (DMC) technique is utilized to perform Brownian dynamics simulations to investigate the dependence of the gate closing rate on both internal and external chloride concentration and the gate charge as well. To accelerate the simulation of gate closing to a time scale that can be accommodated with current methodology and computer power, namely, microseconds, parameters that govern the motion of the bare gate (i.e., in the absence of coupling to the permeating ions) are chosen appropriately. Our simulation results are in qualitative agreement with experimental observations and consistent with the "foot-in-the-door" mechanism (Chen et al. J. Gen. Physiol. 2003, 122, 641; Chen and Miller J. Gen. Physiol. 1996, 108, 237), although the absolute time scale of gate closing in the real channel is much longer (millisecond time scale). A simple model based on the fractional occupation probability of the Cl- binding site that is ultimately blocked by the fast gate suggests straightforward scalability of simulation results for the model channel considered herein to experimentally realistic time scales.


Assuntos
Canais de Cloreto/química , Ativação do Canal Iônico/fisiologia , Modelos Biológicos , Método de Monte Carlo , Termodinâmica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA