Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Front Cardiovasc Med ; 9: 823076, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299981

RESUMO

Background: The prognostic value of N-terminal pro-B-type natriuretic peptide (NT-proBNP) in heart failure (HF) is well-established. However, whether it could facilitate the risk stratification of HF patients with implantable cardioverter-defibrillator (ICD) is still unclear. Objective: To determine the associations between baseline NT-proBNP and outcomes of all-cause mortality and first appropriate shock due to sustained ventricular tachycardia/ventricular fibrillation (VT/VF) in ICD recipients. Methods and results: N-terminal pro-B-type natriuretic peptide was measured before ICD implant in 500 patients (mean age 60.2 ± 12.0 years; 415 (83.0%) men; 231 (46.2%) Non-ischemic dilated cardiomyopathy (DCM); 136 (27.2%) primary prevention). The median NT-proBNP was 854.3 pg/ml (interquartile range [IQR]: 402.0 to 1,817.8 pg/ml). We categorized NT-proBNP levels into quartiles and used a restricted cubic spline to evaluate its nonlinear association with outcomes. The incidence rates of mortality and first appropriate shock were 5.6 and 9.1%, respectively. After adjusting for confounding factors, multivariable Cox regression showed a rise in NT-proBNP was associated with an increased risk of all-cause mortality. Compared with the lowest quartile, the hazard ratios (HRs) with 95% CI across increasing quartiles were 1.77 (0.71, 4.43), 3.98 (1.71, 9.25), and 5.90 (2.43, 14.30) for NT-proBNP (p for trend < 0.001). A restricted cubic spline demonstrated a similar pattern with an inflection point found at 3,231.4 pg/ml, beyond which the increase in NT-proBNP was not associated with increased mortality (p for nonlinearity < 0.001). Fine-Gray regression was used to evaluate the association between NT-proBNP and first appropriate shock accounting for the competing risk of death. In the unadjusted, partial, and fully adjusted analysis, however, no significant association could be found regardless of NT-proBNP as a categorical variable or log-transformed continuous variable (all p > 0.05). No nonlinearity was found, either (p = 0.666). Interactions between NT-proBNP and predefined factors were not found (all p > 0.1). Conclusion: In HF patients with ICD, the rise in NT-proBNP is independently associated with increased mortality until it reaches the inflection point. However, its association with the first appropriate shock was not found. Patients with higher NT-proBNP levels might derive less benefit from ICD implant.

3.
Front Cardiovasc Med ; 8: 711465, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938777

RESUMO

Background: Previous studies have shown that diazoxide can protect against myocardial ischemia-reperfusion injury (MIRI). The intranuclear hypoxia-inducible factor-1 (HIF-1)/hypoxia-response element (HRE) pathway has been shown to withstand cellular damage caused by MIRI. It remains unclear whether diazoxide post-conditioning is correlated with the HIF-1/HRE pathway in protective effect on cardiomyocytes. Methods: An isolated cardiomyocyte model of hypoxia-reoxygenation injury was established. Prior to reoxygenation, cardiomyocytes underwent post-conditioning treatment by diazoxide, and 5-hydroxydecanoate (5-HD), N-(2-mercaptopropionyl)-glycine (MPG), or dimethyloxallyl glycine (DMOG) followed by diazoxide. At the end of reoxygenation, ultrastructural morphology; mitochondrial membrane potential; interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), reactive oxygen species (ROS), and HIF-1α levels; and downstream gene mRNA and protein levels were analyzed to elucidate the protective mechanism of diazoxide post-conditioning. Results: Diazoxide post-conditioning enabled activation of the HIF-1/HRE pathway to induce myocardial protection. When the mitoKATP channel was inhibited and ROS cleared, the diazoxide effect was eliminated. DMOG was able to reverse the effect of ROS absence to restore the diazoxide effect. MitoKATP and ROS in the early reoxygenation phase were key to activation of the HIF-1/HRE pathway. Conclusion: Diazoxide post-conditioning promotes opening of the mitoKATP channel to generate a moderate ROS level that activates the HIF-1/HRE pathway and subsequently induces myocardial protection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA