Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Diagn Microbiol Infect Dis ; 110(1): 116400, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38909426

RESUMO

Drug resistance surveillance is a major integral part of malaria control programs. Molecular methods play a pivotal role in drug resistance detection and related molecular research. This study aimed to develop a rapid and accurate detection method for drug resistance of Plasmodium falciparum (P. falciparum). A quantitative real-time PCR (qPCR) assay has been developed that identifies the mutation at locus A256T in the P.falciparum multi-drug resistance(pfmdr1) gene producing amino acid change at position 86. The results of 198 samples detected by qPCR were consistent with nested PCR and sequencing, giving an accuracy of 94.3%. The sensitivity, specificity, positive and negative predictive value of qPCR were 85.7%, 97.6%, 90.0% and 96.4%, respectively. The results of qPCR are basically consistent with the nested PCR, which is expected to replace the nested PCR as a new molecular biological method for drug resistance detection, providing reliable technical support for global malaria prevention and control.

3.
New Phytol ; 241(2): 779-792, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37933426

RESUMO

(+)-Nootkatone is a natural sesquiterpene ketone widely used in food, cosmetics, pharmaceuticals, and agriculture. It is also regarded as one of the most valuable terpenes used commercially. However, plants contain trace amounts of (+)-nootkatone, and extraction from plants is insufficient to meet market demand. Alpinia oxyphylla is a well-known medicinal plant in China, and (+)-nootkatone is one of the main components within the fruits. By transcriptome mining and functional screening using a precursor-providing yeast chassis, the complete (+)-nootkatone biosynthetic pathway in Alpinia oxyphylla was identified. A (+)-valencene synthase (AoVS) was identified as a novel monocot-derived valencene synthase; three (+)-valencene oxidases AoCYP6 (CYP71BB2), AoCYP9 (CYP71CX8), and AoCYP18 (CYP701A170) were identified by constructing a valencene-providing yeast strain. With further characterisation of a cytochrome P450 reductase (AoCPR1) and three dehydrogenases (AoSDR1/2/3), we successfully reconstructed the (+)-nootkatone biosynthetic pathway in Saccharomyces cerevisiae, representing a basis for its biotechnological production. Identifying the biosynthetic pathway of (+)-nootkatone in A. oxyphylla unravelled the molecular mechanism underlying its formation in planta and also supported the bioengineering production of (+)-nootkatone. The highly efficient yeast chassis screening method could be used to elucidate the complete biosynthetic pathway of other valuable plant natural products in future.


Assuntos
Alpinia , Plantas Medicinais , Sesquiterpenos , Alpinia/metabolismo , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/metabolismo , Plantas Medicinais/metabolismo
4.
Plant Biotechnol J ; 21(12): 2611-2624, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37581303

RESUMO

Plants experience numerous biotic stresses throughout their lifespan, such as pathogens and pests, which can substantially affect crop production. In response, plants have evolved various metabolites that help them withstand these stresses. Here, we show that two specialized metabolites in the herbaceous perennial Belamcanda chinensis, tectorigenin and its glycoside tectoridin, have diverse defensive effects against phytopathogenic microorganisms and antifeeding effects against insect pest. We further functionally characterized a 7-O-uridine diphosphate glycosyltransferase Bc7OUGT, which catalyses a novel reversible glycosylation of tectorigenin and tectoridin. To elucidate the catalytic mechanisms of Bc7OUGT, we solved its crystal structure in complex with UDP and UDP/tectorigenin respectively. Structural analysis revealed the Bc7OUGT possesses a narrow but novel substrate-binding pocket made up by plentiful aromatic residues. Further structure-guided mutagenesis of these residues increased both glycosylation and deglycosylation activities. The catalytic reversibility of Bc7OUGT was also successfully applied in an one-pot aglycon exchange reaction. Our findings demonstrated the promising biopesticide activity of tectorigenin and its glycosides, and the characterization and mechanistic study of Bc7OUGT could facilitate the design of novel reversible UGTs to produce valuable glycosides with health benefits for both plants and humans.


Assuntos
Glicosiltransferases , Isoflavonas , Humanos , Glicosiltransferases/genética , Isoflavonas/química , Glicosilação , Plantas/metabolismo , Difosfato de Uridina , Glicosídeos
5.
ACS Infect Dis ; 9(8): 1534-1545, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37493514

RESUMO

Microscopic examination of thick and thin blood smears stained with Giemsa dye is considered the primary diagnostic tool for the confirmation and management of suspected clinical malaria. However, detecting gametocytes is relatively insensitive, particularly in asymptomatic individuals with low-density Plasmodium infections. To complement existing diagnostic methods, a rapid and ultrasensitive point-of-care testing (POCT) platform for malaria detection is urgently needed and necessary. A platform based on recombinase polymerase amplification (RPA) followed by CRISPR/Cas12a (referred to as RPA-CRISPR/Cas12a) was developed and optimized for the determination of Plasmodium spp. parasites, particularly Plasmodium falciparum, using a fluorescence-based assay (FBDA), lateral flow test strips (LFTS), or naked eye observation (NEO). Then, the established platform was assessed with clinical malaria isolates. Under optimal conditions, the detection threshold was 1 copy/µL for the plasmid, and the limit of detection was 3.11-7.27 parasites/µL for dried blood spots. There was no cross-reactivity against blood-borne pathogens. For the accuracies of RPA-CRISPR/Cas12a, Plasmodium spp. and P. falciparum testing were 98.68 and 94.74%, respectively. The method was consistent with nested PCR results and superior to the qPCR results. RPA-CRISPR/Cas12a is a rapid, ultrasensitive, and reliable platform for malaria diagnosis. The platform requires no or minimal instrumentation for nucleic acid amplification reactions and can be read with the naked eye. Compared with similar diagnostic methods, this platform improves the reaction speed while reducing detection requirements. Therefore, this platform has the potential to become a true POCT for malaria parasites.

6.
Clin Lab ; 69(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37145069

RESUMO

BACKGROUND: Mucor infection cannot be ignored in patients with pulmonary shadowing with cavitation. This paper reports a case of mucormycosis during the COVID-19 pandemic in Hubei Province, China. METHODS: An anesthesiology doctor was initially diagnosed as COVID-19 due to changes in lung imaging. After anti-infective, anti-viral, and symptomatic supportive treatment, some of symptoms were relieved. But some symptoms -'chest pain and discomfort', accompanied by chest sulking and short breath after activities, did not ease. At last, Lichtheimia ramose was detected later by metagenomic next generation sequencing (mNGS) in the bronchoalveolar lavage fluid (BALF). RESULTS: After adjusting amphotericin B for anti-infective treatment, the patient's infection lesions were shrunk and the symptoms were significantly relieved. CONCLUSIONS: The diagnosis of invasive fungal infections is very difficult, and mNGS can make an accurate pathogenic diagnosis of invasive fungal diseases for the clinic and provide a basis for clinical treatment.


Assuntos
COVID-19 , Infecções Fúngicas Invasivas , Mucormicose , Pneumonia , Humanos , Mucormicose/diagnóstico , Mucormicose/epidemiologia , Pandemias , China/epidemiologia , Antivirais , Líquido da Lavagem Broncoalveolar , Sequenciamento de Nucleotídeos em Larga Escala
7.
Microbiol Spectr ; : e0231722, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36946739

RESUMO

Cerebral malaria (CM), caused by Plasmodium falciparum, is the primary cause of death from severe malaria. Even after immediate parenteral therapy with antimalarial drugs, the mortality rate remains 15 to 25%. Currently, no effective therapeutic agents are available for the radical treatment of CM. Thus, further in-depth explorations of adjuvant therapies in combination with antimalarial drugs are urgently needed. The experimental cerebral malaria (ECM) model was established by infecting C57BL/6 mice with Plasmodium berghei ANKA. Subsequently, infected mice were continuously treated with dihydroartemisinin (DHA) in combination with rapamycin (RAP) and atorvastatin (AVA) for 5 days at different time points, including day 0, day 3, and day 6 postinfection (p.i.). Treatment efficacy was evaluated by comparing behavioral scores, body weight, parasitemia, survival rate, blood-brain barrier (BBB) integrity, and histopathology. The optimal combination therapy of DHA, RAP, and AVA on day 3 p.i. was selected for ECM. This strategy significantly improved survival rate, reduced parasitemia, improved the rapid murine coma and behavioral scale scores and permeability of the BBB, attenuated cerebrovascular and hepatic central venous obstruction and hemozoin deposition in the liver, and decreased the red pulp area of the spleen, which effectively ameliorated neurological damage in ECM. It also improved histopathology and neurological damage caused by ECM. In this study, the optimal therapeutic strategy for ECM was selected, which is expected to be a potential therapy for human CM. IMPORTANCE Although artemisinin-based combination therapies (ACTs) have greatly improved the clinical outcome of cerebral malaria (CM) as a fatal disease that can permanently disable a significant proportion of children even if they survive, new treatment options are needed as Plasmodium falciparum develops resistance to antimalarial drugs. Recent reports suggest that basal treatment with artemisinin derivatives often fails to protect against cell death, neurological damage, and cognitive deficits. In this study, the combination of dihydroartemisinin with rapamycin and atorvastatin improved the current antimalarial outcomes by overcoming the limitations of current antimalarials for CM morbidity and neurological sequelae. This combination offers a new adjunctive treatment for the clinical treatment of human CM in susceptible populations, including children under 5 years old and pregnant women.

8.
Cardiovasc Drugs Ther ; 37(3): 571-584, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35796905

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death globally. Atherosclerosis is the basis of major CVDs - myocardial ischemia, heart failure, and stroke. Among numerous functional molecules, the transcription factor nuclear factor κB (NF-κB) has been linked to downstream target genes involved in atherosclerosis. The activation of the NF-κB family and its downstream target genes in response to environmental and cellular stress, hypoxia, and ischemia initiate different pathological events such as innate and adaptive immunity, and cell survival, differentiation, and proliferation. Thus, NF-κB is a potential therapeutic target in the treatment of atherosclerosis and related CVDs. Several biologics and small molecules as well as peptide/proteins have been shown to regulate NF-κB dependent signaling pathways. In this review, we will focus on the function of NF-κB in CVDs and the role of NF-κB inhibitors in the treatment of CVDs.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Insuficiência Cardíaca , Humanos , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia
9.
Int J Neurosci ; 133(8): 908-917, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34871150

RESUMO

PURPOSE: The aim of this study was to investigate the functional role of hypoxic preconditioning (HPC) in human neuroblastoma cells. METHODS: BNIP3 small-interfering RNA (BNIP3-siRNA) sequence was synthesized and used to transfect human neuroblastoma SH-SY5Y cell lines. Thereafter, BNIP3 expression at mRNA and protein levels and its effects on the cell proliferation were analyzed. The most effective pair of siRNA was selected to knockdown the expression level of BNIP3. Moreover, the effects of HPC on oxygen-glucose deprivation/reperfusion (OGD/R)-induced apoptosis and autophagy in SH-SY5Y cells were explored to further reveal the possible mechanisms underlying HPC. RESULTS: BNIP3-siRNA attenuated the protective effects of HPC by decreasing the cell viability, increasing the enzymatic activity of caspase-3 and 9, increasing the rate of apoptosis, and increasing the protein expression level of activated caspase-3. Additionally, BNIP3-siRNA had no significant influence on the expression level of HIF-1α induced by HPC, while it substantially inhibited HPC-induced BNIP3/Beclin1 and autophagy. CONCLUSIONS: HPC promoted autophagy through regulating BNIP3 to reduce OGD/R.


Assuntos
Citoproteção , Neuroblastoma , Humanos , RNA Interferente Pequeno/metabolismo , Caspase 3/metabolismo , Hipóxia Celular , Hipóxia , Oxigênio/metabolismo , Transfecção , Apoptose/genética , Linhagem Celular Tumoral , Glucose , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/genética
10.
BMC Biol ; 20(1): 256, 2022 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-36372880

RESUMO

BACKGROUND: Plants are continuously challenged with biotic stress from environmental pathogens, and precise regulation of defense responses is critical for plant survival. Defense systems require considerable amounts of energy and resources, impairing plant growth, and plant hormones controlling transcriptional regulation play essential roles in establishing the appropriate balance between defense response to pathogens and growth. Chromatin regulators modulating gene transcription are broadly involved in regulating stress-responsive genes. However, which chromatin factors are involved in coordinating hormone signaling and immune responses in plants, and their functional mechanisms, remains unclear. Here, we identified a role of bromodomain-containing protein GTE4 in negatively regulating defense responses in Arabidopsis thaliana. RESULTS: GTE4 mainly functions as activator of gene expression upon infection with Pseudomonas syringe. Genome-wide profiling of GTE4 occupancy shows that GTE4 tends to bind to active genes, including ribosome biogenesis related genes and maintains their high expression levels during pathogen infection. However, GTE4 is also able to repress gene expression. GTE4 binds to and represses jasmonate biosynthesis gene OPR3. Disruption of GTE4 results in overaccumulation of jasmonic acid (JA) and enhanced JA-responsive gene expression. Unexpectedly, over-accumulated JA content in gte4 mutant is coupled with downregulation of JA-mediated immune defense genes and upregulation of salicylic acid (SA)-mediated immune defense genes, and enhanced resistance to Pseudomonas, likely through a noncanonical pathway. CONCLUSIONS: Overall, we identified a new role of the chromatin factor GTE4 as negative regulator of plant immune response through inhibition of JA biosynthesis, which in turn noncanonically activates the defense system against Pseudomonas. These findings provide new knowledge of chromatic regulation of plant hormone signaling during defense responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Etilenos/metabolismo , Etilenos/farmacologia , Doenças das Plantas/genética , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Ácido Salicílico/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunidade , Cromatina/metabolismo
11.
Microbiol Spectr ; 10(6): e0253522, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36445076

RESUMO

Since single nucleotide polymorphisms (SNPs) have attracted attention, there have been many explorations and improvements in screening and detection methods for SNPs. Traditional methods are complex and time-consuming and rely on expensive instruments. Therefore, there is an urgent need for a low-cost, simple, and accurate method that is convenient for use in resource-poor areas. Thus, a platform based on allele-specific PCR (AS-PCR) and a gold nanoparticle-based lateral flow assay (LFA) was developed, optimized, and used to detect the SNPs of the drug resistance gene pfmdr1. Subsequently, the system was assessed on clinical isolates and compared with nested PCR followed by Sanger sequencing. The sensitivity and specificity of the AS-PCR-LFA platform were up to 99.43% and 100%, respectively, based on the clinical isolates. The limit of detection is approximately 150 fg/µL for plasmid DNA as the template and 50 parasites/µL for dried filter blood spots from clinical isolates. The established and optimized AS-PCR-LFA system is more adaptable and rapidly translated to SNP analysis of other drug resistance genes and genetic diseases. In addition, while actively responding to the point-of-care testing policy, it also contributes to the Global Malaria Eradication Program. IMPORTANCE Rapid detection of single nucleotide polymorphisms (SNPs) is essential for malaria treatment. Based on the techniques of allele-specific PCR (AS-PCR) and lateral flow assay (LFA), an accurate and powerful platform for SNP detection of pfmdr1 was developed and evaluated with plasmid and clinical isolates. It offers a useful tool to identify antimalarial drug resistance and can support the effort to eliminate malaria globally.


Assuntos
Antimaláricos , Nanopartículas Metálicas , Plasmodium falciparum , Alelos , Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Ouro/uso terapêutico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase , Proteínas de Protozoários/genética
12.
Plant J ; 112(2): 535-548, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36062348

RESUMO

Benzylisoquinoline alkaloids (BIAs) are a class of plant secondary metabolites with great pharmacological value. Their biosynthetic pathways have been extensively elucidated in the species from the Ranunculales order, such as poppy and Coptis japonica, in which methylation events play central roles and are directly responsible for BIA chemodiversity. Here, we combined BIA quantitative profiling and transcriptomic analyses to identify novel BIA methyltransferases (MTs) from Liriodendron chinense, a basal angiosperm plant. We identified an N-methyltransferase (LcNMT1) and two O-methyltransferases (LcOMT1 and LcOMT3), and characterized their biochemical functions in vitro. LcNMT1 methylates (S)-coclaurine to produce mono- and dimethylated products. Mutagenesis experiments revealed that a single-residue alteration is sufficient to change its substrate selectivity. LcOMT1 methylates (S)-norcoclaurine at the C6 site and LcOMT3 methylates (S)-coclaurine at the C7 site, respectively. Two key residues of LcOMT3, A115 and T301, are identified as important contributors to its catalytic activity. Compared with Ranunculales-derived NMTs, Magnoliales-derived NMTs were less abundant and had narrower substrate specificity, indicating that NMT expansion has contributed substantially to BIA chemodiversity in angiosperms, particularly in Ranunculales species. In summary, we not only characterized three novel enzymes that could be useful in the biosynthetic production of valuable BIAs but also shed light on the molecular origin of BIAs during angiosperm evolution.


Assuntos
Alcaloides , Benzilisoquinolinas , Liriodendron , Magnoliopsida , Benzilisoquinolinas/metabolismo , Magnoliopsida/genética , Magnoliopsida/metabolismo , Metiltransferases/metabolismo , Liriodendron/metabolismo , Alcaloides/metabolismo
13.
Front Cell Infect Microbiol ; 12: 939532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35959375

RESUMO

Cerebral malaria (CM) caused by Plasmodium falciparum is a fatal neurological complication of malaria, resulting in coma and death, and even survivors may suffer long-term neurological sequelae. In sub-Saharan Africa, CM occurs mainly in children under five years of age. Although intravenous artesunate is considered the preferred treatment for CM, the clinical efficacy is still far from satisfactory. The neurological damage induced by CM is irreversible and lethal, and it is therefore of great significance to unravel the exact etiology of CM, which may be beneficial for the effective management of this severe disease. Here, we review the clinical characteristics, pathogenesis, diagnosis, and clinical therapy of CM, with the aim of providing insights into the development of novel tools for improved CM treatments.


Assuntos
Malária Cerebral , Malária Falciparum , Criança , Pré-Escolar , Humanos , Malária Cerebral/diagnóstico , Malária Cerebral/terapia , Malária Falciparum/diagnóstico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum
14.
Front Cell Dev Biol ; 10: 823387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493086

RESUMO

The NLRP3 inflammasome is a crucial constituent of the body's innate immune system, and a multiprotein platform which is initiated by pattern recognition receptors (PRRs). Its activation leads to caspase-1 maturation and release of inflammatory cytokines, interleukin-1ß (IL-1ß) and IL-18, and subsequently causes pyroptosis. Recently, the excess activation of NLRP3 inflammasome has been confirmed to mediate inflammatory responses and to participate in genesis and development of atherosclerosis. Therefore, the progress on the discovery of specific inhibitors against the NLRP3 inflammasome and the upstream and downstream inflammatory factors has become potential targets for clinical treatment. Here we review the recently described mechanisms about the NLRP3 inflammasome activation, and discuss emphatically the pharmacological interventions using statins and natural medication for atherosclerosis associated with NLRP3 inflammasome.

15.
Infect Genet Evol ; 101: 105286, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35470127

RESUMO

BACKGROUND: Molecular markers for monitoring resistance could help improve malaria treatment policies. Delayed clearance of Plasmodium falciparum by artemisinin-based combination therapies (ACTs) has been reported in several countries. In addition to PfKelch13 (pfk13), new drug resistance genes, P. falciparum ubiquitin-specific protease 1 (pfubp1) and the eadaptor protein complex 2 mu subunit (pfap2mu), have been identified as being linked to ACTs. This study investigated the prevalence of single-nucleotide polymorphisms (SNPs) in clinical P. falciparum isolates pfubp1 and pfap2mu imported from Africa and Southeast Asia (SEA) to Wuhan, China, to provide baseline data for antimalarial resistance monitoring in this region. METHODS: Peripheral venous blood samples were collected in Wuhan, China, from August 2011 to December 2019. The Pfubp1 and pfap2mu SNPs of P. falciparum were determined by nested PCR and Sanger sequencing. RESULTS: In total, 296 samples were collected. Subsequently, 92.23% (273/296) were successfully amplified and sequenced for Pfubp1. There were 60.07% (164/273) wild-type strains and 39.93% (109/273) mutant strains. The pfap2mu gene was divided into three fragments for amplification, and 82.77% (245/296), 90.20% (267/296) and 94.59% (280/296) were sequenced successfully. Genotypes reportedly associated with ACTs resistance detected in this study included pfubp1 D1525E as well as E1528D and pfap2mu S160N. The mutation prevalence rates were 10.99% (30/273), 13.19% (36/273) and 11.24% (30/267), respectively. These are all focused on Congo, Nigeria and Angola. Known delayed-clearance parasite mutations have also been found in SEA. CONCLUSIONS: The existence of mutation sites of known clearance genes detected in the isolates in this study, including D1525E and E1528D in the pfubp1 gene and S160N in the pfap2mu gene, further proved the risk of ACTs resistance. Constant vigilance is therefore needed to protect the effectiveness of ACTs and to prevent the spread of drug-resistant P. falciparum. Further studies in malaria-endemic countries are needed to further validate potential genetic markers for monitoring parasite populations in Africa and SEA.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Parasitos , Animais , Angola , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , China/epidemiologia , Resistência a Medicamentos/genética , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Mutação , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
16.
Microbiol Spectr ; 10(2): e0271921, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35416696

RESUMO

Single-nucleotide polymorphisms and genotyping related to genetic detection are several of the focuses of contemporary biotechnology development. Traditional methods are complex, take a long time, and rely on expensive instruments. Therefore, there is an urgent need for a rapid, simple, and accurate method convenient for use in resource-poor areas. Thus, a platform based on allele-specific PCR (AS-PCR) combined with a lateral flow assay (LFA) was developed, optimized, and used to detect the genotype of the Plasmodium falciparum chloroquine transporter gene (pfcrt). Subsequently, the system was assessed by clinical isolates and compared with Sanger sequencing. The sensitivity and specificity of the AS-PCR-LFA platform were 95.83% (115/120) and 100% (120/120), respectively, based on the clinical isolates. The detection limit of plasmid DNA was approximately 3.38 × 105 copies/µL. In addition, 100 parasites/µL were used for the dried filter blood spots from clinical isolates. The established rapid genotyping technique is not limited to antimalarial drug resistance genes but can also be applied to genetic diseases and other infectious diseases. Thus, it has realized the leap and transformation from scientific research theory to practical application and actively responds to the point-of-care testing policy. IMPORTANCE Accurate recognition of the mutation and genotype of genes are essential for the treatment of infectious diseases and genetic diseases. Based on the techniques of allele-specific PCR (AS-PCR) and a lateral flow assay (LFA), a rapid and useful platform for mutation detection was developed and assessed with clinical samples. It offers a powerful tool to identify antimalarial drug resistance and can support malaria control and elimination globally.


Assuntos
Antimaláricos , Malária Falciparum , Alelos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Resistência a Medicamentos/genética , Genótipo , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase/métodos , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
17.
Nano Lett ; 22(1): 211-219, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34967631

RESUMO

Human malaria is a global life-threatening infectious disease. Cerebral malaria (CM) induced by Plasmodium falciparum parasites accounts for 90% of malaria deaths. Treating CM is challenging due to inadequate treatment options and the development of drug resistance. We describe a nanoparticle formulation of the antimalarial drug dihydroartemisinin that is coated in a biomimetic membrane derived from brain microvascular endothelial cells (BMECs) and test its therapeutic efficacy in a mouse model of experimental cerebral malaria (ECM). The membrane-coated nanoparticle drug has a prolonged drug-release profile and enhanced dual targeting killing efficacy toward parasites residing in red blood cells (iRBCs) and iRBCs obstructed in the BMECs (for both rodent and human). In a mice ECM model, the nanodrug protects the brain, liver, and spleen from infection-induced damage and improves the survival rate of mice. This so-called nanodrug offers new insight into engineering nanoparticle-based therapeutics for malaria and other parasitic pathogen infections.


Assuntos
Antimaláricos , Malária Cerebral , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Encéfalo , Modelos Animais de Doenças , Células Endoteliais , Malária Cerebral/tratamento farmacológico , Camundongos , Plasmodium falciparum
18.
Front Cell Infect Microbiol ; 11: 680383, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778098

RESUMO

The genus of Plasmodium parasites can cause malaria, which is a prevalent infectious disease worldwide, especially in tropical and subtropical regions. C57BL/6 mice infected with P. berghei ANKA (PbA) will suffer from experimental cerebral malaria (ECM). However, the gut microbiota in C57BL/6 mice has rarely been investigated, especially regarding changes in the intestinal environment caused by infectious parasites. P. berghei ANKA-infected (PbA group) and uninfected C57BL/6 (Ctrl group) mice were used in this study. C57BL/6 mice were infected with PbA via intraperitoneal injection of 1 × 106 infected red blood cells. Fecal samples of two groups were collected. The microbiota of feces obtained from both uninfected and infected mice was characterized by targeting the V4 region of the 16S rRNA through the Illumina MiSeq platform. The variations in the total gut microbiota composition were determined based on alpha and beta diversity analyses of 16S rRNA sequencing. The raw sequences from all samples were generated and clustered using ≥ 97% sequence identity into many microbial operational taxonomic units (OTUs). The typical microbiota composition in the gut was dominated by Bacteroidetes, Firmicutes, Proteobacteria, and Verrucomicrobia at the phylum level. Bacteroidetes and Verrucomicrobia were considerably decreased after PbA infection compared with the control group (Ctrl), while Firmicutes and Proteobacteria were increased substantially after PbA infection compared with Ctrl. The alpha diversity index showed that the observed OTU number was increased in the PbA group compared with the Ctrl group. Moreover, the discreteness of the beta diversity revealed that the PbA group samples had a higher number of OTUs than the Ctrl group. LEfSe analysis revealed that several potential bacterial biomarkers were clearly related to the PbA-infected mice at the phylogenetic level. Several bacterial genera, such as Acinetobacter, Lactobacillus, and Lachnospiraceae_NK4A136_group, were overrepresented in the PbA-infected fecal microbiota. Meanwhile, a method similar to gene coexpression network construction was used to generate the OTU co-abundance units. These results indicated that P. berghei ANKA infection could alter the gut microbiota composition of C57BL/6 mice. In addition, potential biomarkers should offer insight into malaria pathogenesis and antimalarial drug and malaria vaccine studies.


Assuntos
Microbioma Gastrointestinal , Malária , Animais , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Plasmodium berghei , RNA Ribossômico 16S/genética
19.
Malar J ; 20(1): 209, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933099

RESUMO

BACKGROUND: Imported malaria parasites with anti-malarial drug resistance (ADR) from Africa is a serious public health challenge in non-malarial regions, including Wuhan, China. It is crucial to assess the ADR status in African Plasmodium falciparum isolates from imported malaria cases, as this will provide valuable information for rational medication and malaria control. METHODS: During 2017-2019, a cross-sectional study was carried out in Wuhan, China. Peripheral blood 3 ml of returned migrant workers from Africa was collected. The target fragments from pfcrt, pfmdr1, and k13 propeller (pfk13) genes were amplified, sequenced, and analysed. RESULTS: In total, 106 samples were collected. Subsequently, 98.11% (104/106), 100% (106/106), and 86.79% (92/106) of these samples were successfully amplified and sequenced for the pfcrt (72-76), pfmdr1, and pfk13 genes, respectively. The prevalence of the pfcrt 76 T, pfmdr1 86Y, and pfmdr1 184F mutations was 9.62, 4.72, and 47.17%, respectively. At codons 72-76, the pfcrt locus displayed three haplotypes, CVMNK (wild-type), CVIET (mutation type), CV M/I N/E K/T (mixed type), with 87.50%, 9.62%, and 2.88% prevalence, respectively. For the pfmdr1 gene, NY (wild type), NF and YF (mutant type), N Y/F, Y Y/F, and N/Y Y/F (mixed type) accounted for 34.91, 43.40, 3.77, 15.09, 0.94, and 1.89% of the haplotypes, respectively. A total of 83 isolates with six unique haplotypes were found in pfcrt and pfmdr1 combined haplotypes, of which NY-CVMNK and NF-CVMNK accounted for 40.96% (34/83) and 43.37% (36/83), respectively. Furthermore, 90 cases were successfully sequenced (84.91%, 90/106) at loci 93, 97, 101, and 145, and 78 cases were successfully sequenced (73.58%, 78/106) at loci 343, 353, and 356 for pfcrt. However, the mutation was observed only in locus 356 with 6.41%. For pfk13, mutations reported in Southeast Asia (at loci 474, 476, 493, 508, 527, 533, 537, 539, 543, 553, 568, 574, 578, and 580) and Africa (at loci 550, 561, 575, 579, and 589) were not observed. CONCLUSIONS: The present data from pfcrt and pfmdr1 demonstrate that anti-malarial drugs including chloroquine, amodiaquine, and mefloquine, remain effective against malaria treatment in Africa. The new mutations in pfcrt related to piperaquine resistance remain at relatively low levels. Another source of concern is the artemether-lumefantrine resistance-related profiles of N86 and 184F of pfmdr1. Although no mutation in pfk13 is detected, molecular surveillance must continue.


Assuntos
Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , África , Antimaláricos/uso terapêutico , China , Doenças Transmissíveis Importadas/tratamento farmacológico , Estudos Transversais , Malária Falciparum/tratamento farmacológico , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mutação/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/metabolismo
20.
Front Cell Infect Microbiol ; 11: 613304, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33598439

RESUMO

Background: The emerging Coronavirus Disease-2019 (COVID-19) has challenged the public health globally. With the increasing requirement of detection for SARS-CoV-2 outside of the laboratory setting, a rapid and precise Point of Care Test (POCT) is urgently needed. Methods: Targeting the nucleocapsid (N) gene of SARS-CoV-2, specific primers, and probes for reverse transcription recombinase-aided amplification coupled with lateral flow dipstick (RT-RAA/LFD) platform were designed. For specificity evaluation, it was tested with human coronaviruses, human influenza A virus, influenza B viruses, respiratory syncytial virus, and hepatitis B virus, respectively. For sensitivity assay, it was estimated by templates of recombinant plasmid and pseudovirus of SARS-CoV-2 RNA. For clinical assessment, 100 clinical samples (13 positive and 87 negatives for SARS-CoV-2) were tested via quantitative reverse transcription PCR (RT-qPCR) and RT-RAA/LFD, respectively. Results: The limit of detection was 1 copies/µl in RT-RAA/LFD assay, which could be conducted within 30 min at 39°C, without any cross-reaction with other human coronaviruses and clinical respiratory pathogens. Compared with RT-qPCR, the established POCT assay offered 100% specificity and 100% sensitivity in the detection of clinical samples. Conclusion: This work provides a convenient POCT tool for rapid screening, diagnosis, and monitoring of suspected patients in SARS-CoV-2 endemic areas.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19/instrumentação , Proteínas do Nucleocapsídeo de Coronavírus/genética , Primers do DNA/genética , Humanos , Fosfoproteínas/genética , Testes Imediatos , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/instrumentação , Recombinases/metabolismo , Transcrição Reversa , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA