Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Pregnancy Childbirth ; 23(1): 641, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674133

RESUMO

BACKGROUND: Preimplantation genetic testing for aneuploidy (PGT-A) was demonstrated to be superior to conventional IVF in reducing the incidence of miscarriage and abnormal offspring after the first embryo transfer (ET). PGT-A requires several embryo trophectoderm cells, but its negative impacts on embryo development and long-term influence on the health conditions of conceived children have always been a concern. As an alternative, noninvasive PGT-A (niPGT-A) approaches using spent blastocyst culture medium (SBCM) achieved comparable accuracy with PGT-A in several pilot studies. The main objective of this study is to determine whether noninvasive embryo viability testing (niEVT) results in better clinical outcomes than conventional IVF after the first embryo transfer. Furthermore, we further investigated whether niEVT results in higher the live birth rate between women with advanced maternal age (AMA, > 35 years old) and young women or among patients for whom different fertilization protocols are adopted. METHODS: This study will be a double-blind, multicenter, randomized controlled trial (RCT) studying patients of different ages (20-43 years) undergoing different fertilization protocols (in vitro fertilization [IVF] or intracytoplasmic sperm injection [ICSI]). We will enroll 1140 patients at eight reproductive medical centers over 24 months. Eligible patients should have at least two good-quality blastocysts (better than grade 4 CB). The primary outcome will be the live birth rate of the first embryo transfer (ET). Secondary outcomes will include the clinical pregnancy rate, ongoing pregnancy rate, miscarriage rate, cumulative live birth rate, ectopic pregnancy rate, and time to pregnancy. DISCUSSION: In this study, patients who undergo noninvasive embryo viability testing (niEVT) will be compared to women treated by conventional IVF. We will determine the effects on the pregnancy rate, miscarriage rate, and live birth rate and adverse events. We will also investigate whether there is any difference in clinical outcomes among patients with different ages and fertilization protocols (IVF/ICSI). This trial will provide clinical evidence of the effect of noninvasive embryo viability testing on the clinical outcomes of the first embryo transfer. TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR) Identifier: ChiCTR2100051408. 9 September 2021.


Assuntos
Aborto Espontâneo , Coeficiente de Natalidade , Criança , Feminino , Gravidez , Humanos , Adulto , Aborto Espontâneo/epidemiologia , Aborto Espontâneo/etiologia , Injeções de Esperma Intracitoplásmicas , Taxa de Gravidez , Aneuploidia , Fertilização in vitro , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
3.
Front Genet ; 13: 919301, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812749

RESUMO

Purpose: Recurrent implantation failure (RIF) is an enormous challenge for in vitro fertilization (IVF) clinicians. An understanding of the molecular mechanisms of RIF helps to predict prognosis and develop new therapeutic strategies. The study is designed to identify diagnostic biomarkers for RIF as well as the potential mechanisms underlying RIF by utilizing public databases together with experimental validation. Methods: Two microarray datasets of RIF patients and the healthy control endometrium were downloaded from the Gene Expression Omnibus (GEO) database. First, differentially expressed microRNAs (miRNAs) (DEMs) were identified and their target genes were predicted. Then, we identified differentially expressed genes (DEGs) and selected hub genes through protein-protein interaction (PPI) analyses. Functional enrichment analyses of DEGs and DEMs were conducted. Furthermore, the key DEMs which targeted these hub genes were selected to obtain the key miRNA-target gene network. The key genes in the miRNA-target gene network were validated by a single-cell RNA-sequencing dataset of endometrium from GEO. Finally, we selected two miRNA-target gene pairs for further experimental validation using dual-luciferase assay and quantitative polymerase chain reaction (qPCR). Results: We identified 49 DEMs between RIF patients and the fertile group and found 136,678 target genes. Then, 325 DEGs were totally used to construct the PPI network, and 33 hub genes were selected. Also, 25 DEMs targeted 16 key DEGs were obtained to establish a key miRNA-target gene network, and 16 key DEGs were validated by a single-cell RNA-sequencing dataset. Finally, the target relationship of hsa-miR-199a-5p-PDPN and hsa-miR-4306-PAX2 was verified by dual-luciferase assay, and there were significant differences in the expression of those genes between the RIF and fertile group by PCR (p < 0.05). Conclusion: We constructed miRNA-target gene regulatory networks associated with RIF which provide new insights regarding the underlying pathogenesis of RIF; hsa-miR-199a-5p-PDPN and hsa-miR-4306-PAX2 could be further explored as potential biomarkers for RIF, and their detection in the endometrium could be applied in clinics to estimate the probability of successful embryo transfer.

4.
Appl Biochem Biotechnol ; 194(5): 1857-1870, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34985638

RESUMO

Copper is an essential trace element for living organisms. Copper enriched by yeast of Saccharomyces cerevisiae is regarded as the biologically available organic copper supplement with great potentiality for application. However, the lower uptake ratio of copper ions makes the production of copper enriched by yeast uneconomically and environmentally unfriendly. In this study, S. cerevisiae Cu-5 with higher copper tolerance and intracellular copper accumulation was obtained by screening of our yeast strains collection. To increase the uptake ratio of copper ions, the medium composition and cultivation conditions for strain Cu-5 were optimized systematically. A medium comprised of glucose, yeast extract, (NH4)2SO4, and inorganic salts was determined, then a novel cultivation strategy including pH control at 5.5 and increasing amounts of yeast extract for a higher concentration of copper ion in the medium was developed. The uptake ratios of copper ions were more than 90% after combining 50 to 100 mg/L copper ions with 3.5 to 5.0 g/L yeast extract, which is the highest until now and is conducive to the cost-effective and environmentally friendly production of bioactive copper in yeast-enriched form.


Assuntos
Cobre , Saccharomyces cerevisiae , Transporte Biológico , Meios de Cultura , Íons
5.
J Ind Microbiol Biotechnol ; 39(1): 73-80, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21698486

RESUMO

Bioethanol is an attractive alternative to fossil fuels. Saccharomyces cerevisiae is the most important ethanol producer. However, yeast cells are challenged by various environmental stresses during the industrial process of ethanol production. The robustness under heat, acetic acid, and furfural stresses was improved for ethanologenic S. cerevisiae in this work using genome shuffling. Recombinant yeast strain R32 could grow at 45°C, and resist 0.55% (v/v) acetic acid and 0.3% (v/v) furfural at 40°C. When ethanol fermentation was conducted at temperatures ranging from 30 to 42°C, recombinant strain R32 always gave high ethanol production. After 42 h of fermentation at 42°C, 187.6 ± 1.4 g/l glucose was utilized by recombinant strain R32 to produce 81.4 ± 2.7 g/l ethanol, which were respectively 3.4 and 4.1 times those of CE25. After 36 h of fermentation at 40°C with 0.5% (v/v) acetic acid, 194.4 ± 1.2 g/l glucose in the medium was utilized by recombinant strain R32 to produce 84.2 ± 4.6 g/l of ethanol. The extent of glucose utilization and ethanol concentration of recombinant strain R32 were 6.3 and 7.9 times those of strain CE25. The ethanol concentration produced by recombinant strain R32 was 8.9 times that of strain CE25 after fermentation for 48 h under 0.2% (v/v) furfural stress at 40°C. The strong physiological robustness and fitness of yeast strain R32 support its potential application for industrial production of bioethanol from renewable resources such as lignocelluloses.


Assuntos
Etanol/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Acético/toxicidade , Embaralhamento de DNA , Fermentação , Furaldeído/toxicidade , Glucose/metabolismo , Temperatura Alta , Saccharomyces cerevisiae/efeitos dos fármacos , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA