Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892171

RESUMO

SNARE proteins (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) play a key role in mediating a variety of plant biological processes. Currently, the function of the SNARE gene family in phytohormonal and abiotic stress treatments in grapevine is currently unknown, making it worthwhile to characterize and analyze the function and expression of this family in grapevine. In the present study, 52 VvSNARE genes were identified and predominantly distributed on 18 chromosomes. Secondary structures showed that the VvSNARE genes family irregular random coils and α-helices. The promoter regions of the VvSNARE genes were enriched for light-, abiotic-stress-, and hormone-responsive elements. Intraspecific collinearity analysis identified 10 pairs collinear genes within the VvSNARE family and unveiled a greater number of collinear genes between grapevine and apple, as well as Arabidopsis thaliana, but less associations with Oryza sativa. Quantitative real-time PCR (qRT-PCR) analyses showed that the VvSNARE genes have response to treatments with ABA, NaCl, PEG, and 4 °C. Notably, VvSNARE2, VvSNARE14, VvSNARE15, and VvSNARE17 showed up-regulation in response to ABA treatment. VvSNARE2, VvSNARE15, VvSNARE18, VvSNARE19, VvSNARE20, VvSNARE24, VvSNARE25, and VvSNARE29 exhibited significant up-regulation when exposed to NaCl treatment. The PEG treatment led to significant down-regulation of VvSNARE1, VvSNARE8, VvSNARE23, VvSNARE25, VvSNARE26, VvSNARE31, and VvSNARE49 gene expression. The expression levels of VvSNARE37, VvSNARE44, and VvSNARE46 were significantly enhanced after exposure to 4 °C treatment. Furthermore, subcellular localization assays certified that VvSNARE37, VvSNARE44, and VvSNARE46 were specifically localized at the cell membrane. Overall, this study showed the critical role of the VvSNARE genes family in the abiotic stress response of grapevines, thereby providing novel candidate genes such as VvSNARE37, VvSNARE44, and VvSNARE46 for further exploration in grapevine stress tolerance research.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas , Filogenia , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Estresse Fisiológico , Vitis , Vitis/genética , Vitis/metabolismo , Estresse Fisiológico/genética , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Família Multigênica
2.
Plant Cell Rep ; 43(6): 151, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802546

RESUMO

KEY MESSAGE: The VaBAM3 cloned from Vitis amurensis can enhance the cold tolerance of overexpressed plants, but VaBAM3 knock out by CRISPR/Cas9 system weakened grape callus cold tolerance. In grape production, extreme cold conditions can seriously threaten plant survival and fruit quality. Regulation of starch content by ß-amylase (BAM, EC: 3.2.1.2) contributes to cold tolerance in plants. In this study, we cloned the VaBAM3 gene from an extremely cold-tolerant grape, Vitis amurensis, and overexpressed it in tomato and Arabidopsis plants, as well as in grape callus for functional characterization. After exposure to cold stress, leaf wilting in the VaBAM3-overexpressing tomato plants was slightly less pronounced than that in wild-type tomato plants, and these plants were characterized by a significant accumulation of autophagosomes. Additionally, the VaBAM3-overexpressing Arabidopsis plants had a higher freezing tolerance than the wild-type counterparts. Under cold stress conditions, the activities of total amylase, BAM, peroxidase, superoxide dismutase, and catalase in VaBAM3-overexpressing plants were significantly higher than those in the corresponding wild-type plants. Furthermore, sucrose, glucose, and fructose contents in these lines were similarly significantly higher, whereas starch contents were reduced in comparison to the levels in the wild-type plants. Furthermore, we detected high CBF and COR gene expression levels in cold-stressed VaBAM3-overexpressing plants. Compared with those in VaBAM3-overexpressing grape callus, the aforementioned indicators tended to change in the opposite direction in grape callus with silenced VaBAM3. Collectively, our findings indicate that heterologous overexpression of VaBAM3 enhanced cold tolerance of plants by promoting the accumulation of soluble sugars and scavenging of excessive reactive oxygen species. These findings provide a theoretical basis for the cultivation of cold-resistant grape and support creation of germplasm resources for this purpose.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio , Plântula , Vitis , Vitis/genética , Vitis/fisiologia , Vitis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/genética , Plântula/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Temperatura Baixa , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Solanum lycopersicum/metabolismo , Açúcares/metabolismo , beta-Amilase/genética , beta-Amilase/metabolismo , Amido/metabolismo , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia
3.
Gene ; 854: 147059, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36535462

RESUMO

BRI1-EMS-Suppressor 1 (BES1) regulates plant growth, development, and stress resistance, and plays a pivotal role in the brassinosteroid (BR) signal transduction pathway. In this study, a total of 12 BES1 genes were identified in the grape (Vitis vinifera) genome. Phylogenetic, structure, and motif sequence analyses of these genes provided insights into their evolutionary characteristics. Hormone-, stress-, and light-responsive and organ-specific cis-acting elements were identified in VvBES1 gene promoters. Microarray data analysis showed that VvBES1 family members exhibit diverse expression patterns in different organs. Quantitative real-time PCR (qRT-PCR) analysis showed that the expression levels of VvBES1 genes differed in response to BR, methyl jasmonate (MeJA), cold (4 °C), NaCl, and polyethylene glycol (PEG) treatments. The expression of VvBES1-3 was 29-fold higher under salt stress than control at 12 h. Moreover, VvBES1-3-overexpessing Arabidopsis thaliana plants showed lower malondialdehyde content, higher proline content, enhanced antioxidant enzyme (catalase, superoxide dismutase, peroxidase) activities, and higher salt-responsive gene expression levels than wild-type plants under salt stress, indicating that VvBES1-3 overexpression enhances salt stress tolerance in transgenic Arabidopsis. These results will contribute to further understanding the functions of BES1 transcription factors in the abiotic stress response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Vitis , Arabidopsis/metabolismo , Vitis/genética , Tolerância ao Sal/genética , Filogenia , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Brassinosteroides/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Arabidopsis/genética
4.
Materials (Basel) ; 14(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34279250

RESUMO

In view of various explanations regarding the pH response of the nanocomposite of gold nanoparticles (AuNPs) modified with polyacrylic acid (PAA) molecules in reported literature, in this work, AuNPs with a size of 20 nm saturatedly loaded with PAA molecules (AuNPs-PAAs) were used to investigate the following aspects of this issue. We investigated the effects of pH on the stability of AuNPs-PAAs in the presence of salt, CTAB, poly (sodium styrenesulfonate) (PSS), ethanol, and free PAA, respectively. Common techniques were undertaken to evaluate the stability, including UV-Vis spectroscopy, Zeta potential analysis, and TEM. The results show that AuNPs-PAAs could respond to pH variations, having a reversible aggregation-to-disaggregation, accompanying their Zeta potential change. The proposed corresponding mechanism was that this reversible change was attributes to the net charge variation of AuNPs-PAAs induced by a reversible protonation-to-deprotonation of PAA rather than the conformational change. It was found that salt, CTAB, PSS, and free PAA could strengthen the dispersity of AuNPs-PAAs, even though their absolute Zeta potential values were decreased to small values or dropped to nearly zero. This abnormal phenomenon was explained by solvation. It was also found that AuNPs-PAAs have an opposite pH response in aqueous and ethanol solutions, justifying the solvation effect. All these results revealed the conformational stability of PAAs immobilized on AuNPs. The methods and the findings of this investigation give some new insights to understand the pH-response of AuNPs-PAAs composites and the design of AuNPs-PAAs-based functional sensors.

5.
Nanomaterials (Basel) ; 11(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209119

RESUMO

Traditionally, the acidity of paper-based relics was determined by an extraction method and using a pH meter. This method could not obtain the total acidity of the paper-based relics because it only detected the concentration of free protons in the aqueous soaking solution. To overcome this defect, a new method for determining the total acidity of paper-based relics has been established by using quaternary alloy quantum dots. The quantum dots, CdZnSeS, modified by p-Aminothiophenol (pATP) were prepared, and their composition and structure were characterized. The fluorescence behavior of prepared quantum dots with acidity was investigated. The following results were obtained. The fluorescence of CdZnSeS-pATP quantum dots could decrease with increases in acidity because pATP dissociated from the surfaces of the quantum dots due to protons or undissociated weak acids. Based on this feature, a method for determining the acidity of paper-based relics was constructed, and this method was used to evaluate the acidity of actual paper-based relics. Obviously, for a given paper sample, since both free protons and bound protons can be determined by this method, the acidity measured by this method is more reasonable than that by pH meter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA