Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39133589

RESUMO

The brain signal classification is the basis for the implementation of brain-computer interfaces (BCIs). However, most existing brain signal classification methods are based on signal processing technology, which require a significant amount of manual intervention, such as channel selection and dimensionality reduction, and often struggle to achieve satisfactory classification accuracy. To achieve high classification accuracy and as little manual intervention as possible, a convolutional dynamically convergent differential neural network (ConvDCDNN) is proposed for solving the electroencephalography (EEG) signal classification problem. First, a single-layer convolutional neural network is used to replace the preprocessing steps in previous work. Then, focal loss is used to overcome the imbalance in the dataset. After that, a novel automatic dynamic convergence learning (ADCL) algorithm is proposed and proved for training neural networks. Experimental results on the BCI Competition 2003, BCI Competition III A, and BCI Competition III B datasets demonstrate that the proposed ConvDCDNN framework achieved state-of-the-art performance with accuracies of 100%, 99%, and 98%, respectively. In addition, the proposed algorithm exhibits a higher information transfer rate (ITR) compared with current algorithms.

2.
Dev Cell ; 59(12): 1506-1522.e11, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38582082

RESUMO

The commitment and differentiation of human placental progenitor cytotrophoblast (CT) cells are crucial for a successful pregnancy, but the underlying mechanism remains poorly understood. Here, we identified the transcription factor (TF), specificity protein 6 (SP6), as a human species-specific trophoblast lineage TF expressed in human placental CT cells. Using pluripotent stem cells as a model, we demonstrated that SP6 controls CT generation and the establishment of trophoblast stem cells (TSCs) and identified msh homeobox 2 (MSX2) as the downstream effector in these events. Mechanistically, we showed that SP6 interacts with histone acetyltransferase P300 to alter the landscape of H3K27ac at targeted regulatory elements, thereby favoring transcriptional activation and facilitating CT cell fate decisions and TSC maintenance. Our results established SP6 as a regulator of the human trophoblast lineage and implied its role in placental development and the pathogenies of placental diseases.


Assuntos
Diferenciação Celular , Proteínas de Homeodomínio , Trofoblastos , Humanos , Trofoblastos/metabolismo , Trofoblastos/citologia , Feminino , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Gravidez , Placenta/metabolismo , Placenta/citologia , Linhagem da Célula , Placentação , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Sequências Reguladoras de Ácido Nucleico/genética , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia
3.
J Clin Rheumatol ; 30(4): 138-144, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38351510

RESUMO

BACKGROUND: Although observational studies have revealed associations between idiopathic inflammatory myopathies (IIMs) and lung cancer (LC), they have not established a causal relationship between these 2 conditions. METHODS: We used a 2-sample Mendelian randomization approach to examine the bidirectional causal associations between IIMs and LC, using single-nucleotide polymorphisms selected from high-quality genome-wide association studies in the FinnGen database. Sensitivity analyses were conducted to assess potential heterogeneity and pleiotropy impacts on the Mendelian randomization results. RESULTS: Our analysis demonstrated a positive causal effect of genetically increased IIM risk on LC (odds ratio, 1.114; 95% confidence interval, 1.057-1.173; p = 5.63 × 10 -5 ), particularly on the lung squamous cell carcinoma subtype (odds ratio, 1.168, 95% confidence interval, 1.049-1.300, p = 0.00451), but not on lung adenocarcinoma or small cell lung cancer. No causal effect of LC on IIMs was identified. Sensitivity analyses indicated that horizontal pleiotropy was unlikely to influence causality, and leave-one-out analysis confirmed that the observed associations were not driven by a single-nucleotide polymorphism. CONCLUSION: Our findings offer compelling evidence of a positive causal relationship between IIMs and LC, particularly with regard to lung squamous cell carcinoma, in the European population. Conversely, there is no evidence of LC causing IIMs. We recommend that LC diagnosis consider the specific characteristics of IIMs.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias Pulmonares , Análise da Randomização Mendeliana , Miosite , Polimorfismo de Nucleotídeo Único , Humanos , Análise da Randomização Mendeliana/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/etiologia , Miosite/genética , Miosite/epidemiologia , Miosite/diagnóstico , Predisposição Genética para Doença , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/epidemiologia , Carcinoma de Células Escamosas/etiologia , Causalidade
4.
Front Genet ; 14: 1270278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028630

RESUMO

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder caused by defects in motile ciliary function and/or structure. Outer dynein arm docking complex subunit 1 (ODAD1) is an important component of the outer dynein arm docking complex (ODA-DC). To date, 13 likely pathogenic mutations of ODAD1 have been reported. However, the pathogenesis of ODAD1 mutations remains elusive. To investigate the pathogenesis of splice-site mutations in ODAD1 discovered in this study and those reported previously, molecular and functional analyses were performed. Whole-exome sequencing revealed a compound mutation in ODAD1 (c.71-2A>C; c.598-2A>C) in a patient with PCD, with c.598-2A>C being a novel mutation that resulted in two mutant transcripts. The compound mutation in ODAD1 (c.71-2A>C; c.598-2A>C) led to aberrant splicing that resulted in the absence of the wild-type ODAD1 and defects of the outer dynein arm in ciliary axonemes, causing a decrease in ciliary beat frequency. Furthermore, we demonstrated that the truncated proteins resulting from splice-site mutations in ODAD1 could retain partial function and inhibit the interaction between wild-type ODAD1 and ODAD3. The results of this study expand the mutational and clinical spectrum of PCD, provide more evidence for genetic counseling, and offer new insights into gene-based therapeutic strategies for PCD.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37215745

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic disease associated with inflammation and structural changes in the airways and lungs, resulting from a combination of genetic and environmental factors. This interaction highlights significant genes in early life, particularly those involved in lung development, such as the Wnt signaling pathway. The Wnt signaling pathway plays an important role in cell homeostasis, and its abnormal activation can lead to the occurrence of related diseases such as asthma, COPD, and lung cancer. Due to the fact that the Wnt pathway is mechanically sensitive, abnormal activation of the Wnt pathway by mechanical stress contributes to the progression of chronic diseases. But in the context of COPD, it has received little attention. In this review, we aim to summarize the important current evidence on mechanical stress through the Wnt pathway in airway inflammation and structural changes in COPD and to provide potential targets for COPD treatment strategies.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Via de Sinalização Wnt , Pulmão/metabolismo , Asma/patologia , Doença Crônica , Inflamação/metabolismo
6.
Adv Med Sci ; 68(2): 186-194, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37148787

RESUMO

PURPOSE: Current medical treatment for asthma aims to inhibit airway smooth muscle (ASM) contraction and proliferation, however, the efficacy of available treatment options is unsatisfactory. Therefore, we explored the effect of LIM domain kinase (LIMK) inhibitor - LIMKi3, on ASM to improve the understanding of ASM contraction and proliferation mechanisms, and to investigate new therapeutic targets. MATERIALS AND METHODS: Asthma model was induced in rats by intraperitoneal injection of ovalbumin. Using phospho-specific antibodies, we examined LIMK, phosphorylated LIMK, cofilin and phosphorylated cofilin. ASM contraction was studied in organ bath experiments. ASM cells proliferation was studied with cell counting kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays. RESULTS: Immunofluorescence indicated that LIMKs are expressed in ASM tissues. Western blot revealed that LIMK1 and phospho-cofilin were significantly elevated in asthma ASM tissues. The LIMK inhibitor, LIMKi3 (1 â€‹µM) could reduce cofilin phosphorylation and therefore inhibit contraction of ASM tissues, and induce actin filament breakdown as well as cell proliferation reduction in cultured human ASM cells. CONCLUSIONS: ASM contraction and proliferation in asthma may underlie the effects of LIMKs. Small molecule LIMK inhibitor, LIMKi3, might be a potential therapeutic strategy for asthma.


Assuntos
Asma , Quinases Lim , Humanos , Ratos , Animais , Quinases Lim/metabolismo , Asma/tratamento farmacológico , Asma/metabolismo , Proliferação de Células , Contração Muscular , Fatores de Despolimerização de Actina/metabolismo , Fatores de Despolimerização de Actina/farmacologia
7.
Front Immunol ; 14: 1295118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274819

RESUMO

Background: Observational studies found associations between ankylosing spondylitis (AS) and iridocyclitis (IC), but the causality remained unconfirmed. Methods: We employed two-sample Mendelian randomization (MR) to investigate the bidirectional causal relationships between AS and IC. Single-nucleotide polymorphisms (SNPs) were chosen from the FinnGen database's genome-wide association studies (GWAS) following a rigorous evaluation of the studies' quality. Sensitivity analysis was performed to assess the potential influence of pleiotropy and heterogeneity on the MR findings. Results: Elevated genetic risk for AS showed positive causal effects on IC and its subtypes (IC, OR = 1.094, 95% CI = 1.035-1.157, P = 0.00156; Acute/Subacute IC, OR = 1.327, 95% CI = 1.266-1.392, P = 8.73×10-32; Chronic IC, OR = 1.454, 95% CI = 1.308-1.618, P = 5.19×10-12). Significant causal association was specifically observed between Acute/Subacute IC and AS (OR = 1.944, 95% CI = 1.316-2.873, P = 8.38×10-4). Sensitivity analysis suggested that horizontal pleiotropy was unlikely to influence the causality, and the leave-one-out analysis confirmed that a single SNP did not drive the observed associations. Conclusion: Our findings provide new proof of a positive causal relationship between AS and IC in the European population. Notably, it is Acute/Subacute IC, rather than IC as a whole or Chronic IC, that is associated with an elevated risk of AS. These results emphasize the significance of considering AS characteristics in the diagnosis of Acute/Subacute IC.


Assuntos
Iridociclite , Espondilite Anquilosante , Uveíte Anterior , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Espondilite Anquilosante/genética
8.
J Paediatr Child Health ; 58(10): 1736-1740, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36069395

RESUMO

Primary ciliary dyskinesia (PCD) is an autosomal recessive genetic disorder characterised by motor ciliary dysfunction. The main manifestations are bronchiectasis, chronic sinusitis and situs inversus (viscera translocation triad). Additionally, it can present as male infertility and female ectopic pregnancy. However, there is currently no recognised diagnostic standard for PCD, which brings great challenges to its diagnosis and treatment. In addition to clinical data, the current diagnostic methods of PCD mainly include PICADAR, nasal exhaled nitric oxide, transmission electron microscopy, high-resolution immunofluorescence, high-speed video microscopy analysis and gene detection. This article makes a comprehensive comparison of the above diagnostic methods and suggests that genetic detection technology will become the general trend of PCD diagnosis.


Assuntos
Transtornos da Motilidade Ciliar , Síndrome de Kartagener , Situs Inversus , Transtornos da Motilidade Ciliar/diagnóstico , Feminino , Humanos , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genética , Masculino , Microscopia Eletrônica de Transmissão , Óxido Nítrico , Nariz
9.
Diagnostics (Basel) ; 11(8)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34441265

RESUMO

OBJECTIVES: To develop and validate a radiological nomogram combining radiological and clinical characteristics for differentiating mycoplasma pneumonia and bacterial pneumonia with similar CT findings. METHODS: A total of 100 cases of pneumonia patients receiving chest CT scan were retrospectively analyzed, including 60 patients with mycoplasma pneumonia and 40 patients with bacterial pneumonia. The patients were divided into the train set (n = 70) and the test set (n = 30). The features were extracted from chest CT images of each patient by AK analysis software, then univarite analysis, spearman correlation analysis, and least absolute shrinkage and selection operator (LASSO) were utilized for dimension reduction in training set. A radiomics model was built by multivariable logistic regression based on the selected features, and a radiomics-clinical multivariable logistic regression model was built by combining imaging radiomics and clinical risk factors (age and temperature). ROC, AUC, sensitivity, specificity, and accuracy were calculated to validate the two models. The nomogram of the radiomics-clinical was built and evaluated by calibration curve. The clinical benefit of the two models was measured by using decision curve. RESULTS: A total of 396 texture features were extracted from each chest CT image, and 10 valuable features were screened out. In the radiomics model, the AUC, sensitivity, specificity, and accuracy for the train set is 0.877, 0.762, 0.821, 78.6%, and for the test set it is 0.810, 0.667, 0.750 and 70.0%, respectively. In the radiomics-clinical model, the AUC, sensitivity, specificity, and accuracy for the train set is 0.905, 0.976, 0.714, 87.1%, and for the test set is is 0.847, 0.889, 0.667 and 80.0%, respectively. Decision curve analysis shows that both the two models increase the clinical benefits of the patients, and the radiomics-clinical model gains higher clinical benefits, compared to the radiomics model. CONCLUSION: The radiomics-clinical nomogram had good performance in identifying mycoplasma pneumonia and bacterial pneumonias, which would be helpful in clinical decision-making.

10.
Front Oncol ; 11: 662444, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34195074

RESUMO

Species-specific lncRNAs significantly determine species-specific functions through various ways, such as epigenetic regulation. However, there has been no study focusing on the role of species-specific lncRNAs in other species yet. Here, we found that siRNAs targeting mouse-specific lncRNA AA388235 could significantly induce death of human tumor cells, although it has no effect on mouse tumor cells and normal human cells. The mechanism studies showed that these siRNAs could activate the response of human tumor cells to exogenous nucleic acids, induce pyroptosis and apoptosis in the presence of GSDME, but induce apoptosis in the absence of GSDME. They also significantly inhibited the growth of human tumor cells in vivo. 17 siRNAs were designed for seven more mouse-specific lncRNAs selected randomly, among which 12 siRNAs targeting five lncRNAs induced death in human tumor cell. Our study not only demonstrates that the siRNAs designed for knocking down mouse-specific lncRNA AA388235 can be potential tumor therapeutic drugs, but also suggests that non-human species-specific lncRNAs are a huge potential library that can be used to design siRNAs for tumor treatment. Large-scale screening based on this is promising.

11.
Mol Med Rep ; 22(5): 3723-3734, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33000187

RESUMO

The cellular and molecular mechanisms via which MK2206, an AKT inhibitor, prevents the activation of AKT in toluene diisocyanate (TDI)­induced asthma remain unclear. Thus, the present study aimed to evaluate the potential effects of MK2206 on airway AKT activation, inflammation and remodeling in a TDI­induced mouse model of asthma. A total of 24 BALB/c mice were selected and randomly divided into untreated (AOO), asthma (TDI), MK2206 (TDI + MK2206), and dexamethasone (TDI + DEX) groups. Phosphorylated AKT (p­AKT), total AKT, airway remodeling indices, α­smooth muscle actin (α­SMA) and collagen I levels in pulmonary tissue were measured using western blotting. Airway inflammation factors, including interleukin (IL)­4, ­5, ­6, and ­13 in bronchoalveolar lavage fluid (BALF) and IgE in serum, were determined using ELISA. Additionally, the airway hyperresponsiveness (AHR) and pulmonary pathology of all groups were evaluated. The results of the present study demonstrated that p­AKT levels in lung protein lysate were upregulated, and neutrophil, eosinophil and lymphocyte counts were increased in the lungs obtained from the asthma group compared with the AOO group. Both MK2206 and DEX treatment in TDI­induced mice resulted not only in the attenuation of AKT phosphorylation, but also reductions in neutrophil, eosinophil and lymphocyte counts in the lungs of mice in the asthma group. Consistently, increases in the levels of the inflammatory cytokines IL­4, ­5, ­6 and ­13 analyzed in BALF, and serum IgE in the TDI group were demonstrated to be attenuated in the TDI + MK2206 and TDI + DEX groups. Furthermore, α­SMA and AHR were significantly attenuated in the TDI + MK2206 group compared with the TDI group. These results revealed that MK2206 not only inhibited AKT activation, but also served a role in downregulating airway inflammation and airway remodeling in chemical­induced asthma. Therefore, the findings of the present study may provide important insight into further combination therapy.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Anti-Inflamatórios/administração & dosagem , Asma/induzido quimicamente , Asma/tratamento farmacológico , Dexametasona/administração & dosagem , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Tolueno 2,4-Di-Isocianato/efeitos adversos , Animais , Asma/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Imunoglobulina E/sangue , Inflamação/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
12.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(7): 988-994, 2020 Jul 30.
Artigo em Chinês | MEDLINE | ID: mdl-32895166

RESUMO

OBJECTIVE: To study the anti- fibrotic effect of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-EXOs) and explore the mechanism. METHODS: Twenty-four C57 BL/6 mice were divided into 4 groups (n=6), including the control group treated with intratracheal injection of saline (3 mg/kg); lung fibrosis model group with intratracheal injection of 1.5 mg/mL bleomycin solution (prepared with saline, 3 mg/kg); EXOs1 group with intratracheal injection of 1.5 mg/mL bleomycin solution (3 mg/kg) and hUCMSC-EXOs (100 µg/250 µL, given by tail vein injection on the next day after modeling); and EXOs2 group with intratracheal injection of 1.5 mg/mL bleomycin solution (3 mg/kg) and hUCMSC-EXOs (100 µg/250 µL, given by tail vein injection on the 10th day after modeling). At 21 days after modeling, pulmonary index, lung tissue pathology and collagen deposition in the mice were assessed using HE staining and Masson staining. The expression level of TGF-ß1 was detected using ELISA, and vimentin, E-cadherin and phosphorylated Smad2/3 (p-Smad2/3) were detected using immunohistochemical staining. CCK8 assay was used to evaluate the effect of hUCMSCEXOs on the viability of A549 cells, and Western blotting was used to detect the expression levels of p-Smad2/3, vimentin, and E-cadherin in the cells. RESULTS: Compared with those in the model group, the mice treated with hUCMSC-EXOs showed significantly reduced the pulmonary index (P < 0.05), collagen deposition, lung tissue pathologies, lowered expressions of TGF-ß1 (P < 0.05), vimentin, and p-Smad2/3 and increased expression of E-cadherin. hUCMSC-EXOs given on the second day produced more pronounced effect than that given on the 11th day (P < 0.05). CCK8 assay results showed that hUCMSC-EXOs had no toxic effects on A549 cells (P > 0.05). Western blotting results showed that hUCMSC-EXOs treatment significantly increased the expression of E-cadherin and decreased the expressions of p-Smad2/3 and vimentin in the cells. CONCLUSIONS: hUCMSC-EXOs can alleviate pulmonary fibrosis in mice by inhibiting epithelialmesenchymal transition activated by the TGF-ß1/Smad2/3 signaling pathway, and the inhibitory effect is more obvious when it is administered on the second day after modeling.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Fibrose Pulmonar , Animais , Transição Epitelial-Mesenquimal , Humanos , Camundongos , Fator de Crescimento Transformador beta1 , Cordão Umbilical
13.
J Cell Mol Med ; 24(14): 8179-8193, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32542982

RESUMO

Accumulating evidence indicates that thrombin, the major effector of the coagulation cascade, plays an important role in the pathogenesis of asthma. Interestingly, dabigatran, a drug used in clinical anticoagulation, directly inhibits thrombin activity. The aim of this study was to investigate the effects and mechanisms of dabigatran on airway smooth muscle remodeling in vivo and in vitro. Here, we found that dabigatran attenuated inflammatory pathology, mucus production, and collagen deposition in the lungs of asthmatic mice. Additionally, dabigatran suppressed Yes-associated protein (YAP) activation in airway smooth muscle of asthmatic mice. In human airway smooth muscle cells (HASMCs), dabigatran not only alleviated thrombin-induced proliferation, migration and up-regulation of collagen I, α-SMA, CTGF and cyclin D1, but also inhibited thrombin-induced YAP activation, while YAP activation mediated thrombin-induced HASMCs remodeling. Mechanistically, thrombin promoted actin stress fibre polymerization through the PAR1/RhoA/ROCK/MLC2 axis to activate YAP and then interacted with SMAD2 in the nucleus to induce downstream target genes, ultimately aggravating HASMCs remodeling. Our study provides experimental evidence that dabigatran ameliorates airway smooth muscle remodeling in asthma by inhibiting YAP signalling, and dabigatran may have therapeutic potential for the treatment of asthma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Remodelação das Vias Aéreas/efeitos dos fármacos , Asma/metabolismo , Asma/patologia , Proteínas de Ciclo Celular/metabolismo , Dabigatrana/farmacologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Actinas/metabolismo , Animais , Asma/tratamento farmacológico , Asma/etiologia , Biomarcadores , Modelos Animais de Doenças , Imunofluorescência , Imuno-Histoquímica , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Ovalbumina/efeitos adversos , Ovalbumina/imunologia , Transdução de Sinais/efeitos dos fármacos , Fibras de Estresse/metabolismo , Trombina/metabolismo , Proteínas de Sinalização YAP
14.
Virol Sin ; 35(3): 266-271, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32125642

RESUMO

Currently there is no effective antiviral therapy for SARS-CoV-2 infection, which frequently leads to fatal inflammatory responses and acute lung injury. Here, we discuss the various mechanisms of SARS-CoV-mediated inflammation. We also assume that SARS-CoV-2 likely shares similar inflammatory responses. Potential therapeutic tools to reduce SARS-CoV-2-induced inflammatory responses include various methods to block FcR activation. In the absence of a proven clinical FcR blocker, the use of intravenous immunoglobulin to block FcR activation may be a viable option for the urgent treatment of pulmonary inflammation to prevent severe lung injury. Such treatment may also be combined with systemic anti-inflammatory drugs or corticosteroids. However, these strategies, as proposed here, remain to be clinically tested for effectiveness.


Assuntos
Anti-Inflamatórios/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Inflamação/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/imunologia , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/virologia , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Antivirais , Anticorpos Facilitadores/imunologia , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , COVID-19 , Citocinas/metabolismo , Humanos , Inflamação/imunologia , Pulmão/imunologia , Pandemias , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Replicação Viral
15.
PLoS One ; 15(1): e0228276, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31999793

RESUMO

Evaluation of fish nutritional content information could provide essential guidance for seafood consumption and human health protection. This study investigated the lipid contents, fatty acid compositions, and nutritional qualities of 22 commercially important marine fish species from the Pearl River Estuary (PRE), South China Sea. All the analyzed species had a low to moderate lipid content (0.51-7.35% fat), with no significant differences in fatty acid profiles among fishes from different lipid categories (p > 0.05). Compared with previous studies from other regions, the examined fish species exhibited higher proportions of saturated fatty acids (SFAs, 39.1 ± 4.00%) and lower contents of polyunsaturated fatty acids (PUFAs, 21.6 ± 5.44%), presumably due to the shifted diet influence from increased diatoms and decreased dinoflagellate over the past decades in the PRE. This study further revealed that there was a significantly negative correlation between the trophic levels and levels of PUFAs in the examined species (Pearson's r = -0.42, p = 0.04), likely associated with their differed dietary composition. Considering the health benefit of PUFAs, a few marine fish in PRE with low levels of PUFAs might have no significant contribution to the cardiovascular disease prevention, although fish with different fatty acid profiles most likely contribute differently towards human health. Additional studies are needed in order to comprehensively analyze the nutritional status of fish species in the PRE.


Assuntos
Ácidos Graxos/análise , Peixes , Alimentos Marinhos/análise , Animais , China , Estuários , Rios
16.
Biochem Biophys Res Commun ; 522(3): 757-762, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31791578

RESUMO

Loss of E-cadherin elicits epithelial-mesenchymal transition (EMT). While both the Src family of membrane-associated non-receptor tyrosine kinases (SFKs) and Slit2 binding to Roundabout 1 (Robo1) have been shown to induce E-cadherin repression and EMT, whether these two signaling pathways are mechanistically coupled remains unknown in epithelial cells. Here we found that Slit2 and Robo1 overexpression activated Src kinases for tyrosine phosphorylation, degradation of E-cadherin and induction of EMT. Specific blockade of Slit2 binding to Robo1 inactivated Src, prevented E-cadherin phosphorylation and EMT induction. Biochemically, the cytoplasmic CC3 motif of Robo1 (CC3) bound directly to the SH2 and 3 domains of c-Src and the cytoplasmic domains of E-cadherin. Slit2 induced Robo1 association with endogenous c-Src and E-cadherin, whereas ectopic expression of CC3 dissociated this protein complex in colorectal epithelial cells. These results indicate that Slit2 not only induces Robo1 binding to Src, but also recruits Src to E-cadherin for tyrosine phosphorylation of E-cadherin, leading to E-cadherin degradation and EMT induction in colorectal epithelial cells.


Assuntos
Caderinas/metabolismo , Transição Epitelial-Mesenquimal , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Quinases da Família src/metabolismo , Proteína Tirosina Quinase CSK/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Humanos , Fosforilação , Mapas de Interação de Proteínas , Proteínas Roundabout
17.
Cell ; 178(6): 1478-1492.e20, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31474362

RESUMO

Liver fibrosis is a very common condition seen in millions of patients with various liver diseases, and yet no effective treatments are available owing to poorly characterized molecular pathogenesis. Here, we show that leukocyte cell-derived chemotaxin 2 (LECT2) is a functional ligand of Tie1, a poorly characterized endothelial cell (EC)-specific orphan receptor. Upon binding to Tie1, LECT2 interrupts Tie1/Tie2 heterodimerization, facilitates Tie2/Tie2 homodimerization, activates PPAR signaling, and inhibits the migration and tube formations of EC. In vivo studies showed that LECT2 overexpression inhibits portal angiogenesis, promotes sinusoid capillarization, and worsens fibrosis, whereas these changes were reversed in Lect2-KO mice. Adeno-associated viral vector serotype 9 (AAV9)-LECT2 small hairpin RNA (shRNA) treatment significantly attenuates fibrosis. Upregulation of LECT2 is associated with advanced human liver fibrosis staging. We concluded that targeting LECT2/Tie1 signaling may represent a potential therapeutic target for liver fibrosis, and serum LECT2 level may be a potential biomarker for the screening and diagnosis of liver fibrosis.


Assuntos
Células Endoteliais/metabolismo , Hepatócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Cirrose Hepática/metabolismo , Fígado/metabolismo , Receptores de TIE/metabolismo , Animais , Biomarcadores/metabolismo , Capilares/metabolismo , Células Endoteliais/citologia , Células Endoteliais/patologia , Células HEK293 , Hepatócitos/citologia , Hepatócitos/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Fígado/irrigação sanguínea , Fígado/patologia , Cirrose Hepática/diagnóstico , Camundongos Endogâmicos C57BL
18.
Sci Total Environ ; 651(Pt 1): 1029-1037, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30266048

RESUMO

As long-lived apex predators in the Pearl River Estuary (PRE) of China, Indo-Pacific humpback dolphins (Sousa chinensis) are particularly vulnerable to anthropogenic impact and may undergo considerable ecological trait changes. The variability of traits, however, is often difficult to trace back in nature. Here, we analyzed stable isotope ratios of carbon and nitrogen in muscle samples of 88 S. chinensis stranded in the PRE from 2004 to 2016 to investigate the ecological changes occurring in the dolphins. Stable isotope analysis revealed the existence of two sub-aggregations of S. chinensis in the PRE. Generalized additive models showed significant decreasing trends in both carbon and nitrogen isotopic signatures over time, indicating the habitat changes and dietary shifts, possibly due to the influence of increased coastal developments and fishing activities in the PRE. Diet modeling suggests that the proportional contribution of higher trophic-level prey decreased in the S. chinensis diet over time, while increased consumption of lower trophic-level prey was observed. This shift was related to depletion of higher trophic-level prey caused by overfishing. Although S. chinensis could temporarily compensate for the lost energy supply through feeding plasticity (revealed by the negligible differences of isotope niche width among different stranding periods), long-term depletion in prey availability may cause long-lasting negative effects on this dolphin population. This study highlights the crucial relationships between fishery management and dolphin conservation, providing scientific evidence for the long-term protection of this threatened species in the PRE region.


Assuntos
Conservação dos Recursos Naturais/métodos , Golfinhos , Ecossistema , Estuários , Animais , Dieta/estatística & dados numéricos , Espécies em Perigo de Extinção , Isótopos
19.
Life Sci ; 214: 176-183, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30385178

RESUMO

The YAP and TAZ, as the downstream effectors of Hippo pathway, have emerged as important translational co-activators of a wide variety of biological processes. YAP/TAZ plays a crucial role in the lung development and physiology. Dysregulation of YAP/TAZ signaling pathway contributes to the development and progression of chronic lung diseases, including lung cancer, pulmonary fibrosis, pulmonary hypertension, COPD, asthma, and lung infection. Therefore, owing to its critical functions, delineation of the signaling mechanisms of YAP/TAZ in pathological conditions will shed light on developing strategies for its therapeutic targeting. Currently, the complex regulation of this pathway is under extensive investigation. In this review, we summarize and present recent findings of molecular mechanisms of YAP/TAZ in the lung physiological and pathological conditions, as well as the implications of YAP/TAZ for lung diseases treatment and regeneration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Pneumopatias/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição/fisiologia , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Pneumopatias/fisiopatologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/fisiopatologia , Fosfoproteínas/genética , Proteínas de Sinalização YAP
20.
Life Sci ; 197: 130-139, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29428600

RESUMO

AIMS: Thrombin is a serine proteinase that is not only involved in coagulation cascade, but also mediates a number of biological responses relevant to tissues repair, and induces bronchoconstriction. TGF-ß plays a pivotal role in airway remodeling due to its effects on airway smooth muscle proliferation and extracellular matrix (ECM) deposition. Recently, bronchoconstriction itself is found to constitute a form of strain and is highly relevant to asthmatic airway remodeling. However, the underlying mechanisms remain unknown. Here, we investigated the role of contraction- dependent TGF-ß activation in thrombin-induced remodeling in human airway smooth muscle (HASM) cells. MATERIALS AND METHODS: Primary HASM cells were treated with or without thrombin in the absence or presence of anti-TGF-ß antibody, cytochalasin D and formoterol. CFSE labeling index or CCK-8 assay were performed to test cell proliferation. RT-PCR and Western blotting were used to examined ECM mRNA level and collagen Iα1, α-actin protein expression, respectively. Immunofluorescence was also used to confirm contraction induced by thrombin in HASM cells. KEY FINDING: Thrombin stimulation enhanced HASM cells proliferation and activated TGF-ß signaling. Thrombin induced ECM mRNA and collagen Iα1 protein expression, and these effects are mediated by TGF-ß. Abrogation of TGF-ß activation by contraction inhibitors cytochalasin D and formoterol prevents the thrombin-induced effects. SIGNIFICANCE: These findings suggest that contraction-dependent TGF-ß activation could be a mechanism by which thrombin leads to the development of asthmatic airway remodeling. Blocking physical forces with bronchodilator would be an intriguing way in reducing airway remodeling in asthma.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Brônquios/metabolismo , Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trombina/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Brônquios/patologia , Células Cultivadas , Humanos , Miócitos de Músculo Liso/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA