Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691630

RESUMO

Despite the significant achievements in dearomatization and C-H functionalization of arenes, the arene ring-opening remains a largely unmet challenge and is underdeveloped due to the high bond dissociation energy and strong resonance stabilization energy inherent in aromatic compounds. Herein, we demonstrate a novel carbene assisted strategy for arene ring-opening. The understanding of the mechanism by our DFT calculations will stimulate wide application of bulk arene chemicals for the synthesis of value-added polyconjugated chain molecules. Various aryl azide derivatives now can be directly converted into valuable polyconjugated enynes, avoiding traditional synthesis including multistep unsaturated precursors, poor selectivity control, and subsequent transition-metal catalyzed cross-coupling reactions. The simple conditions required were demonstrated in the late-stage modification of complex molecules and fused ring compounds. This chemistry expands the horizons of carbene chemistry and provides a novel pathway for arene ring-opening.

2.
Angew Chem Int Ed Engl ; 63(17): e202401318, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38459760

RESUMO

The molecular structure-editing through selective C-C bond cleavage allows for the precise modification of molecular structures and opens up new possibilities in chemical synthesis. By strategically cleaving C-C bonds and editing the molecular structure, more efficient and versatile pathways for the synthesis of complex compounds could be designed, which brings significant implications for drug development and materials science. o-Aminophenethyl alcohols and amines are the essential key motifs in bioactive and functional material molecules. The traditional synthesis of these compounds usually requires multiple steps which could generate inseparable isomers and induce low efficiencies. By leveraging a molecular editing strategy, we herein reported a selective ring-opening amination of isochromans and tetrahydroisoquinolines for the efficient synthesis of o-aminophenethyl alcohols and amines. This innovative chemistry allows for the precise cleavage of C-C bonds under mild transition metal-free conditions. Notably, further synthetic application demonstrated that our method could provide an efficient approach to essential components of diverse bioactive molecules.

3.
Acta Pharm Sin B ; 14(3): 1030-1076, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38487004

RESUMO

Synthetic chemistry plays an indispensable role in drug discovery, contributing to hit compounds identification, lead compounds optimization, candidate drugs preparation, and so on. As Nobel Prize laureate James Black emphasized, "the most fruitful basis for the discovery of a new drug is to start with an old drug"1. Late-stage modification or functionalization of drugs, natural products and bioactive compounds have garnered significant interest due to its ability to introduce diverse elements into bioactive compounds promptly. Such modifications alter the chemical space and physiochemical properties of these compounds, ultimately influencing their potency and druggability. To enrich a toolbox of chemical modification methods for drug discovery, this review focuses on the incorporation of halogen, oxygen, and nitrogen-the ubiquitous elements in pharmacophore components of the marketed drugs-through late-stage modification in recent two decades, and discusses the state and challenges faced in these fields. We also emphasize that increasing cooperation between chemists and pharmacists may be conducive to the rapid discovery of new activities of the functionalized molecules. Ultimately, we hope this review would serve as a valuable resource, facilitating the application of late-stage modification in the construction of novel molecules and inspiring innovative concepts for designing and building new drugs.

4.
Chem Rev ; 123(22): 12313-12370, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37942891

RESUMO

Late-stage functionalization (LSF) introduces functional group or structural modification at the final stage of the synthesis of natural products, drugs, and complex compounds. It is anticipated that late-stage functionalization would improve drug discovery's effectiveness and efficiency and hasten the creation of various chemical libraries. Consequently, late-stage functionalization of natural products is a productive technique to produce natural product derivatives, which significantly impacts chemical biology and drug development. Carbon-carbon bonds make up the fundamental framework of organic molecules. Compared with the carbon-carbon bond construction, the carbon-carbon bond activation can directly enable molecular editing (deletion, insertion, or modification of atoms or groups of atoms) and provide a more efficient and accurate synthetic strategy. However, the efficient and selective activation of unstrained carbon-carbon bonds is still one of the most challenging projects in organic synthesis. This review encompasses the strategies employed in recent years for carbon-carbon bond cleavage by explicitly focusing on their applicability in late-stage functionalization. This review expands the current discourse on carbon-carbon bond cleavage in late-stage functionalization reactions by providing a comprehensive overview of the selective cleavage of various types of carbon-carbon bonds. This includes C-C(sp), C-C(sp2), and C-C(sp3) single bonds; carbon-carbon double bonds; and carbon-carbon triple bonds, with a focus on catalysis by transition metals or organocatalysts. Additionally, specific topics, such as ring-opening processes involving carbon-carbon bond cleavage in three-, four-, five-, and six-membered rings, are discussed, and exemplar applications of these techniques are showcased in the context of complex bioactive molecules or drug discovery. This review aims to shed light on recent advancements in the field and propose potential avenues for future research in the realm of late-stage carbon-carbon bond functionalization.

5.
Angew Chem Int Ed Engl ; 62(10): e202215008, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36541579

RESUMO

Trifluoromethanesulfonic anhydride has been widely used in synthetic organic chemistry, not only for the conversion of various oxygen-containing compounds to the triflates, but also for the electrophilic activation and further conversion of amides, sulfoxides, and phosphorus oxides. In recent years, the utilization of Tf2 O as an activator for nitrogen-containing heterocycles, nitriles and nitro groups has become a promising tool for the development of new valuable methods with considerable success. In addition, Tf2 O has been used as an efficient radical trifluoromethylation and trifluoromethylthiolation reagent due to the contained SO2 CF3 fragment, and significant progress has been made in this area. This review summarizes the recent progress in the applications of Tf2 O in the above two aspects, and aims to illustrate the role and potential application of this reagent in organic synthesis.

6.
Chem Sci ; 13(31): 9056-9061, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36091215

RESUMO

C(sp3)-H bond desaturation has been an attractive strategy in organic synthesis. Enamides are important structural fragments in pharmaceuticals and versatile synthons in organic synthesis. However, the dehydrogenation of amides usually occurs on the acyl side benefitting from enolate chemistry like the desaturation of ketones and esters. Herein, we demonstrate an Fe-assisted regioselective oxidative desaturation of amides, which provides an efficient approach to enamides and ß-halogenated enamides.

7.
Nature ; 597(7874): 64-69, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34280952

RESUMO

Synthetic chemistry is built around the formation of carbon-carbon bonds. However, the development of methods for selective carbon-carbon bond cleavage is a largely unmet challenge1-6. Such methods will have promising applications in synthesis, coal liquefaction, petroleum cracking, polymer degradation and biomass conversion. For example, aromatic rings are ubiquitous skeletal features in inert chemical feedstocks, but are inert to many reaction conditions owing to their aromaticity and low polarity. Over the past century, only a few methods under harsh conditions have achieved direct arene-ring modifications involving the cleavage of inert aromatic carbon-carbon bonds7,8, and arene-ring-cleavage reactions using stoichiometric transition-metal complexes or enzymes in bacteria are still limited9-11. Here we report a copper-catalysed selective arene-ring-opening reaction strategy. Our aerobic oxidative copper catalyst converts anilines, arylboronic acids, aryl azides, aryl halides, aryl triflates, aryl trimethylsiloxanes, aryl hydroxamic acids and aryl diazonium salts into alkenyl nitriles through selective carbon-carbon bond cleavage of arene rings. This chemistry was applied to the modification of polycyclic aromatics and the preparation of industrially important hexamethylenediamine and adipic acid derivatives. Several examples of the late-stage modification of complex molecules and fused ring compounds further support the potential broad utility of this methodology.

8.
Chem Soc Rev ; 50(14): 8067-8101, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34095935

RESUMO

Molecular oxygen as a green, non-toxic and inexpensive oxidant has displayed lots of advantages compared with other oxidants towards more selective, sustainable, and environmentally benign organic transformations. The oxygenation reactions which employ molecular oxygen or ambient air as both an oxidant and an oxygen source provide an efficient route to the synthesis of oxygen-containing compounds, and have been demonstrated in practical applications such as pharmaceutical synthesis and late-stage functionalization of complex molecules. This review article introduces the recent advances of radical processes in molecular oxygen-mediated oxygenation reactions. Reaction scopes, limitations and mechanisms are discussed based on reaction types and catalytic systems. Conclusions and perspectives are also given in the end.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA