Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(39): 21242-21252, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37751194

RESUMO

Solid-state electrolytes (SSEs) are crucial to high-energy-density lithium metal batteries, but they commonly suffer from slow Li+ transfer kinetics and low mechanical strength, severely hampering the application for all-solid-state batteries. Here, we develop a two-dimensional (2D) high-entropy lithium-ion conductor, lithium-containing transition-metal phosphorus sulfide, HE-LixMPS3 (Lix(Fe1/5Co1/5Ni1/5Mn1/5Zn1/5)PS3) with five transition-metal atoms and lithium ions (Li+) dispersed into [P2S6]2- framework layers, exhibiting high lattice distortions and a large amount of cation vacancies. Such unique features enable to efficiently accelerate the migration of Li+ in 2D [P2S6]2- interlamination, delivering a high ionic conductivity of 5 × 10-4 S cm-1 at room temperature. Moreover, the HE-LixMPS3 laminate can be employed as a building block to construct an ultrathin SSE film (∼10 µm) based on strong C-S bonding between HE-LixMPS3 and nitrile-butadiene rubber. The SSE film delivers a strong mechanical robustness (6.0 MPa, 310% elongation) and a high ionic conductivity of 4 × 10-4 S cm-1, showing a long cycle stability of 800 h in lithium symmetric cells. Coupled with LiFePO4 cathode and lithium anode, the all-solid-state battery presents a high Coulombic efficiency of 99.8% within 2000 cycles at 5.0 C.

2.
Adv Mater ; 35(36): e2301399, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37381914

RESUMO

Low-dielectric-constant materials such as silicon dioxide serving as interconnect insulators in current integrated circuit face a great challenge due to their relatively high dielectric constant of ≈4, twice that of the recommended value by the International Roadmap for Devices and Systems, causing severe parasitic capacitance and associated response delay. Here, novel atomic layers of amorphous carbon nitride (a-CN) are prepared via a topological conversion of MXene-Ti3 CNTx under bromine vapor. Remarkably, the assembled a-CN film exhibits an ultralow dielectric constant of 1.69 at 100 kHz, much lower than the previously reported dielectric materials such as amorphous carbon (2.2) and fluorinated-doped SiO2 (3.6), ascribed to the low density of 0.55 g cm-3 and high sp3 C level of 35.7%. Moreover, the a-CN film has a breakdown strength of 5.6 MV cm-1 , showing great potential in integrated circuit application.

3.
Adv Mater ; 35(39): e2302141, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37172077

RESUMO

Although 2D transition metal carbides and nitrides (MXenes) have fantastic physical and chemical properties as well as wide applications, it remains challenging to produce stable MXenes due to their rapid structural degradation. Here, unique metal-bonded atomic layers of transition metal carbides with high stabilities are produced via a simple topological reaction between chlorine-terminated MXenes and selected metals, where the metals enable them to not only remove partially Cl terminations, but also bond with adjacent atomic MXene slabs, driven by the symmetry of MAX phases. The films constructed from Al-bonded Ti3 C2 Clx atomic layers show high oxidation resistance up to 400 °C and low sheet resistance of 9.3 Ω sq-1 . Coupled to the multilayer structure, the Al-bonded Ti3 C2 Clx film displays a significantly improved electromagnetic interference (EMI) shielding capability with a total shielding effectiveness value of 39 dB at a low thickness of 3.1 µm, outperforming pure Ti3 C2 Clx film.

4.
ACS Nano ; 15(12): 19275-19283, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34898180

RESUMO

Although transition metal dichalcogenides (TMDs) monolayers are widely applied in electronics, optics, catalysis, and energy storage, their yield or output is commonly very low (<1 wt % or micrometer level) based on the well-known top-down (e.g., exfoliation) and bottom-up (e.g., chemical vapor deposition) approaches. Here, 1T MoS2 monolayers with a very high fraction of ∼90% were achieved via the conversion of Mo-based MXenes (Mo2CTx and Mo1.33CTx) at high temperatures in hydrogen sulfide gas, in which the Mo-layer of Mo-based MXenes could be transformed to MoS2 monolayers and the Mo vacancies facilitate the gliding of sulfur layers to form 1T MoS2. The resultant 1T MoS2 monolayers with numerous vacancies exhibit strong chemisorption and high catalytic activity for lithium polysulfides (LiPSs), delivering a reversible capacity of 736 mAh g-1 at 0.5 C, a superior rate capability of 532 mAh g-1 at 5 C, and a good stability up to 200 cycles at 1 C in lithium-sulfur (Li-S) batteries.

5.
ACS Nano ; 15(3): 4927-4936, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33617242

RESUMO

Single atom catalysts possess attractive electrocatalytic activities for various chemical reactions owing to their favorable geometric and electronic structures compared to the bulk counterparts. Herein, we demonstrate an efficient approach to producing single atom copper immobilized MXene for electrocatalytic CO2 reduction to methanol via selective etching of hybrid A layers (Al and Cu) in quaternary MAX phases (Ti3(Al1-xCux)C2) due to the different saturated vapor pressures of Al- and Cu-containing products. After selective etching of Al in the hybrid A layers, Cu atoms are well-preserved and simultaneously immobilized onto the resultant MXene with dominant surface functional group (Clx) on the outmost Ti layers (denoted as Ti3C2Clx) via Cu-O bonds. Consequently, the as-prepared single atom Cu catalyst exhibits a high Faradaic efficiency value of 59.1% to produce CH3OH and shows good electrocatalytic stability. On the basis of synchrotron-based X-ray absorption spectroscopy analysis and density functional theory calculations, the single atom Cu with unsaturated electronic structure (Cuδ+, 0 < δ < 2) delivers a low energy barrier for the rate-determining step (conversion of HCOOH* to absorbed CHO* intermediate), which is responsible for the efficient electrocatalytic CO2 reduction to CH3OH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA