Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(16): e2304861, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38355304

RESUMO

An ideal hydrogel for stem cell therapy would be injectable and efficiently promote stem cell proliferation and differentiation in body. Herein, an injectable, single-component hydrogel with hyaluronic acid (HA) modified with phenylboronic acid (PBA) and spermidine (SM) is introduced. The resulting HAps (HA-PBA-SM) hydrogel is based on the reversible crosslinking between the diol and the ionized PBA, which is stabilized by the SM. It has a shear-thinning property, enabling its injection through a syringe to form a stable hydrogel inside the body. In addition, HAps hydrogel undergoes a post-injection "self-curing," which stiffens the hydrogel over time. This property allows the HAps hydrogel to meet the physical requirements for stem cell therapy in rigid tissues, such as bone, while maintaining injectability. The hydrogel enabled favorable proliferation of human mesenchymal stem cells (hMSCs) and promoted their differentiation and mineralization. After the injection of hMSCs-containing HAps into a rat femoral defect model, efficient osteogenic differentiation of hMSCs and bone regeneration is observed. The study demonstrates that simple cationic modification of PBA-based hydrogel enabled efficient gelation with shear-thinning and self-curing properties, and it would be highly useful for stem cell therapy and in vivo bone regeneration.


Assuntos
Regeneração Óssea , Ácidos Borônicos , Diferenciação Celular , Hidrogéis , Células-Tronco Mesenquimais , Animais , Regeneração Óssea/fisiologia , Ratos , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Humanos , Ácido Hialurônico/química , Ratos Sprague-Dawley , Encapsulamento de Células/métodos , Proliferação de Células , Osteogênese/fisiologia , Modelos Animais de Doenças , Espermidina/farmacologia , Espermidina/química
2.
Biomaterials ; 302: 122342, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37804721

RESUMO

Directional differentiation of stem cells is a key step in stem cell therapy. In this study, we developed saponin-based nanoparticles (Ad-SNPs) containing dexamethasone (Dex) and alpha-lipoic acid (ALA) to promote osteogenic differentiation of human mesenchymal stem cells (hMSCs) and bone regeneration. The Ad-SNPs can achieve rapid cellular uptake through a pore-forming effect without cytotoxic cationic charges. They also provide extended retention in cell cytosol due to their uptake route. These properties are advantageous in efficiently supplying drugs to the hMSCs. The combination of Dex and ALA facilitated mitochondrial fusion and prevented reactive oxygen species-induced DNA damage. It also helped to preserve mitochondrial dynamics, and the efficient supply of it provided by the Ad-SNPs induced differentiation of hMSCs into osteoblasts. The Ad-SNPs showed outstanding performance in osteoblast differentiation, maturation, and mineralization in 3D culture compared with NPs without saponin and with free drugs. When Ad-SNP-treated hMSCs were tested in a rat femoral bone defect model, they showed the fastest regeneration of bones and complete repair in the shortest period among all groups. To the best of our knowledge, this study is the first application of pore-forming saponin-based NPs with rapid cellular uptake and extended retention to stem cell therapy, and we demonstrated their promising potential in bone regeneration and efficient delivery of Dex and ALA.


Assuntos
Células-Tronco Mesenquimais , Nanopartículas , Ratos , Animais , Humanos , Osteogênese , Preparações Farmacêuticas , Citosol , Diferenciação Celular , Regeneração Óssea , Células-Tronco , Células Cultivadas
3.
Nanoscale Adv ; 5(6): 1600-1610, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36926565

RESUMO

In many cases, a single mode of cancer therapy shows limited efficacy in treating complex and heterogeneous tumors. To improve cancer treatment, combining chemo-, photodynamic-, photothermal-, radio-, and immunotherapy is clinically recognized. When different therapeutic treatments are combined, they often show synergetic effects that further improve therapeutic outcomes. In this review, we introduce nanoparticle (NP)-based combination cancer therapies that use organic and inorganic NPs. Liposomes, polymers, and exosomes can be prepared with amphiphilic properties, high physical stability, and low immune response to treat cancers in a multimodal way. Inorganic NPs, including upconversion, plasmonic, and mesoporous silica NPs, have emerged as a new technology for photodynamic-, photothermal-, and immunotherapy. These NPs can simultaneously carry multiple drug molecules and deliver them efficiently to tumor tissue, as demonstrated in many studies. In addition to reviewing recent advances in organic and inorganic NPs used in combination therapy for cancers, we also discuss their rational design and the outlook for future nanomedicine development.

4.
Int J Biol Macromol ; 223(Pt A): 77-86, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36336157

RESUMO

Efficient delivery of a photosensitizer (PS) and oxygen to tumor tissue is critical for successful photodynamic therapy (PDT). For this purpose, we developed a fucoidan (Fu)-chlorin e6 (Ce6) nanoparticle (NP) containing perfluorooctylbromide (PFOB). Fu, a biopolymer derived from seaweed, made up the hydrophilic shell of the NP and provided specific targeting to tumor cells by P-selectin binding. Conjugation with the hydrophobic Ce6 enabled self-assembly and Ce6-generated cytotoxic reactive oxygen species to kill tumor cells upon laser irradiation. PF supplied oxygen to the hypoxic tumor tissue and increased the efficacy of the PDT. The developed Fu-Ce6-PF-NPs bound specifically to SCC7 tumor cells and killed them via a photodynamic effect on laser irradiation. High accumulation of the NPs in tumor tissue and improved tumor suppression by PDT were observed in SCC7 tumor-bearing mice. The overall data demonstrated the potential of Fu-Ce6-PF-NP as a tumor-targeting drug carrier for effective PDT.


Assuntos
Nanopartículas , Fotoquimioterapia , Porfirinas , Camundongos , Animais , Linhagem Celular Tumoral , Porfirinas/química , Fármacos Fotossensibilizantes/química , Nanopartículas/química , Oxigênio
5.
Biomater Res ; 26(1): 57, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273205

RESUMO

Optical imaging has been essential for scientific observations to date, however its biomedical applications has been restricted due to its poor penetration through tissues. In living tissue, signal attenuation and limited imaging depth caused by the wave distortion occur because of scattering and absorption of light by various molecules including hemoglobin, pigments, and water. To overcome this, methodologies have been proposed in the various fields, which can be mainly categorized into two stategies: developing new imaging probes and optical techniques. For example, imaging probes with long wavelength like NIR-II region are advantageous in tissue penetration. Bioluminescence and chemiluminescence can generate light without excitation, minimizing background signals. Afterglow imaging also has high a signal-to-background ratio because excitation light is off during imaging. Methodologies of adaptive optics (AO) and studies of complex media have been established and have produced various techniques such as direct wavefront sensing to rapidly measure and correct the wave distortion and indirect wavefront sensing involving modal and zonal methods to correct complex aberrations. Matrix-based approaches have been used to correct the high-order optical modes by numerical post-processing without any hardware feedback. These newly developed imaging probes and optical techniques enable successful optical imaging through deep tissue. In this review, we discuss recent advances for multi-scale optical imaging within deep tissue, which can provide reseachers multi-disciplinary understanding and broad perspectives in diverse fields including biophotonics for the purpose of translational medicine and convergence science. Methodologies for multi-scale optical imaging within deep tissues are discussed in diverse fields including biophotonics for the purpose of translational medicine and convergence science. Recent imaging probes have tried deep tissue imaging by NIR-II imaging, bioluminescence, chemiluminescence, and afterglow imaging. Optical techniques including direct/indirect and coherence-gated wavefront sensing also can increase imaging depth.

6.
J Nanobiotechnology ; 19(1): 411, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876140

RESUMO

BACKGROUND: Combination therapy using more than one drug can result in a synergetic effect in clinical treatment of cancer. For this, it is important to develop an efficient drug delivery system that can contain multiple drugs and provide high accumulation in tumor tissue. In particular, simultaneous and stable loading of drugs with different chemical properties into a single nanoparticle carrier is a difficult problem. RESULTS: We developed rhamnolipid-coated double emulsion nanoparticles containing doxorubicin and erlotinib (RL-NP-DOX-ERL) for efficient drug delivery to tumor tissue and combination chemotherapy. The double emulsion method enabled simultaneous loading of hydrophilic DOX and hydrophobic ERL in the NPs, and biosurfactant RL provided stable surface coating. The resulting NPs showed fast cellular uptake and synergetic tumor cell killing in SCC7 cells. In real-time imaging, they showed high accumulation in SCC7 tumor tissue in mice after intravenous injection. Furthermore, enhanced tumor suppression was observed by RL-NP-DOX-ERL in the same mouse model compared to control groups using free drugs and NPs containing a single drug. CONCLUSIONS: The developed RL-NP-DOX-ERL provided efficient delivery of DOX and ERL to tumor tissue and successful tumor therapy with a synergetic effect. Importantly, this study demonstrated the promising potential of double-emulsion NPs and RL coating for combination therapy.


Assuntos
Antineoplásicos , Emulsões/química , Glicolipídeos/química , Nanopartículas , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Quimioterapia Combinada , Cloridrato de Erlotinib/química , Cloridrato de Erlotinib/farmacocinética , Cloridrato de Erlotinib/farmacologia , Camundongos , Nanopartículas/química , Nanopartículas/metabolismo , Imagem Óptica
7.
Int J Biol Macromol ; 191: 1228-1239, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34619279

RESUMO

In this study, we chemically modified poly(L-lactic acid) (PLLA) with functional amine groups and fabricated a PLLA membrane crosslinked with genipin as a biomembrane for inducing guided bone regeneration (GBR). The mechanical strength of the PLLA-amine membrane was improved by crosslinking with genipin compared to pure PLLA membrane. The surface of the PLLA-amine membrane crosslinked with genipin had many more uniform pores. Attachment and proliferation of MC3T3-E1 cells were increased and improved on the PLLA-amine membrane crosslinked with genipin. In an in vitro osteogenesis study, MC3T3-E1 cells on the PLLA membrane showed higher alkaline phosphatase (ALP) activity and calcification ability evaluated by alizarin red S staining than those on the pure PLLA membrane. When a skull defect hole of a rat was covered with the PLLA-amine membrane crosslinked with genipin, vigorous new bone regeneration determined by computed tomography at 8 weeks post operation was superior to that when the skull defect was covered with the pure PLLA membrane. Taken together, these results demonstrate that the PLLA-amine membrane crosslinked with genipin has a promising therapeutic application to GBR as a barrier membrane for covering the defect site.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Regeneração Tecidual Guiada/métodos , Ácido Láctico/química , Ácido Láctico/farmacologia , Poliésteres/química , Poliésteres/farmacologia , Animais , Calcificação Fisiológica , Proliferação de Células , Iridoides , Masculino , Camundongos , Osteogênese , Ratos , Ratos Sprague-Dawley , Crânio/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA