Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Ophthalmol ; 240: 205-216, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35247336

RESUMO

PURPOSE: To assess whether the 3-dimensional (3D) structural configuration of the central retinal vessel trunk and its branches (CRVT&B) could be used as a diagnostic marker for glaucoma. DESIGN: Retrospective, deep-learning approach diagnosis study. METHODS: We trained a deep learning network to automatically segment the CRVT&B from the B-scans of the optical coherence tomography (OCT) volume of the optic nerve head. Subsequently, 2 different approaches were used for glaucoma diagnosis using the structural configuration of the CRVT&B as extracted from the OCT volumes. In the first approach, we aimed to provide a diagnosis using only 3D convolutional neural networks and the 3D structure of the CRVT&B. For the second approach, we projected the 3D structure of the CRVT&B orthographically onto sagittal, frontal, and transverse planes to obtain 3 two-dimensional (2D) images, and then a 2D convolutional neural network was used for diagnosis. The segmentation accuracy was evaluated using the Dice coefficient, whereas the diagnostic accuracy was assessed using the area under the receiver operating characteristic curves (AUCs). The diagnostic performance of the CRVT&B was also compared with that of retinal nerve fiber layer (RNFL) thickness (calculated in the same cohorts). RESULTS: Our segmentation network was able to efficiently segment retinal blood vessels from OCT scans. On a test set, we achieved a Dice coefficient of 0.81 ± 0.07. The 3D and 2D diagnostic networks were able to differentiate glaucoma from nonglaucoma subjects with accuracies of 82.7% and 83.3%, respectively. The corresponding AUCs for the CRVT&B were 0.89 and 0.90, higher than those obtained with RNFL thickness alone (AUCs ranging from 0.74 to 0.80). CONCLUSIONS: Our work demonstrated that the diagnostic power of the CRVT&B is superior to that of a gold-standard glaucoma parameter, that is, RNFL thickness. Our work also suggested that the major retinal blood vessels form a "skeleton"-the configuration of which may be representative of major optic nerve head structural changes as typically observed with the development and progression of glaucoma.


Assuntos
Glaucoma , Pressão Intraocular , Biomarcadores , Glaucoma/diagnóstico , Humanos , Curva ROC , Vasos Retinianos/diagnóstico por imagem , Estudos Retrospectivos , Tomografia de Coerência Óptica/métodos
2.
Am J Ophthalmol ; 236: 172-182, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34157276

RESUMO

PURPOSE: To develop a novel deep-learning approach that can describe the structural phenotype of the glaucomatous optic nerve head (ONH) and can be used as a robust glaucoma diagnosis tool. DESIGN: Retrospective, deep-learning approach diagnosis study. METHOD: We trained a deep-learning network to segment 3 neural-tissue and 4 connective-tissue layers of the ONH. The segmented optical coherence tomography images were then processed by a customized autoencoder network with an additional parallel branch for binary classification. The encoder part of the autoencoder reduced the segmented optical coherence tomography images into a low-dimensional latent space (LS), whereas the decoder and the classification branches reconstructed the images and classified them as glaucoma or nonglaucoma, respectively. We performed principal component analysis on the latent parameters and identified the principal components (PCs). Subsequently, the magnitude of each PC was altered in steps and reported how it impacted the morphology of the ONH. RESULTS: The image reconstruction quality and diagnostic accuracy increased with the size of the LS. With 54 parameters in the LS, the diagnostic accuracy was 92.0 ± 2.3% with a sensitivity of 90.0 ± 2.4% (at 95% specificity), and the corresponding Dice coefficient for the reconstructed images was 0.86 ± 0.04. By changing the magnitudes of PC in steps, we were able to reveal how the morphology of the ONH changes as one transitions from a "nonglaucoma" to a "glaucoma" condition. CONCLUSIONS: Our network was able to identify novel biomarkers of the ONH for glaucoma diagnosis. Specifically, the structural features identified by our algorithm were found to be related to clinical observations of glaucoma.


Assuntos
Glaucoma , Disco Óptico , Inteligência Artificial , Glaucoma/diagnóstico , Humanos , Disco Óptico/diagnóstico por imagem , Fenótipo , Células Ganglionares da Retina , Estudos Retrospectivos , Tomografia de Coerência Óptica/métodos
3.
Biomed Opt Express ; 12(3): 1482-1498, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33796367

RESUMO

Speckle noise and retinal shadows within OCT B-scans occlude important edges, fine textures and deep tissues, preventing accurate and robust diagnosis by algorithms and clinicians. We developed a single process that successfully removed both noise and retinal shadows from unseen single-frame B-scans within 10.4ms. Mean average gradient magnitude (AGM) for the proposed algorithm was 57.2% higher than current state-of-the-art, while mean peak signal to noise ratio (PSNR), contrast to noise ratio (CNR), and structural similarity index metric (SSIM) increased by 11.1%, 154% and 187% respectively compared to single-frame B-scans. Mean intralayer contrast (ILC) improvement for the retinal nerve fiber layer (RNFL), photoreceptor layer (PR) and retinal pigment epithelium (RPE) layers decreased from 0.362 ± 0.133 to 0.142 ± 0.102, 0.449 ± 0.116 to 0.0904 ± 0.0769, 0.381 ± 0.100 to 0.0590 ± 0.0451 respectively. The proposed algorithm reduces the necessity for long image acquisition times, minimizes expensive hardware requirements and reduces motion artifacts in OCT images.

4.
Transl Vis Sci Technol ; 9(2): 23, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32818084

RESUMO

Purpose: To remove blood vessel shadows from optical coherence tomography (OCT) images of the optic nerve head (ONH). Methods: Volume scans consisting of 97 horizontal B-scans were acquired through the center of the ONH using a commercial OCT device for both eyes of 13 subjects. A custom generative adversarial network (named DeshadowGAN) was designed and trained with 2328 B-scans in order to remove blood vessel shadows in unseen B-scans. Image quality was assessed qualitatively (for artifacts) and quantitatively using the intralayer contrast-a measure of shadow visibility ranging from 0 (shadow-free) to 1 (strong shadow). This was computed in the retinal nerve fiber layer (RNFL), the inner plexiform layer (IPL), the photoreceptor (PR) layer, and the retinal pigment epithelium (RPE) layer. The performance of DeshadowGAN was also compared with that of compensation, the standard for shadow removal. Results: DeshadowGAN decreased the intralayer contrast in all tissue layers. On average, the intralayer contrast decreased by 33.7 ± 6.81%, 28.8 ± 10.4%, 35.9 ± 13.0%, and 43.0 ± 19.5% for the RNFL, IPL, PR layer, and RPE layer, respectively, indicating successful shadow removal across all depths. Output images were also free from artifacts commonly observed with compensation. Conclusions: DeshadowGAN significantly corrected blood vessel shadows in OCT images of the ONH. Our algorithm may be considered as a preprocessing step to improve the performance of a wide range of algorithms including those currently being used for OCT segmentation, denoising, and classification. Translational Relevance: DeshadowGAN could be integrated to existing OCT devices to improve the diagnosis and prognosis of ocular pathologies.


Assuntos
Aprendizado Profundo , Disco Óptico , Algoritmos , Humanos , Retina , Tomografia de Coerência Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA