Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 35(45): e2303401, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37499253

RESUMO

Although multifunctional wearable devices have been widely investigated for healthcare systems, augmented/virtual realities, and telemedicines, there are few reports on multiple signal monitoring and logical signal processing by using one single nanomaterial without additional algorithms or rigid application-specific integrated circuit chips. Here, multifunctional intelligent wearable devices are developed using monolithically patterned gold nanowires for both signal monitoring and processing. Gold bulk and hollow nanowires show distinctive electrical properties with high chemical stability and high stretchability. In accordance, the monolithically patterned gold nanowires can be used to fabricate the robust interfaces, programmable sensors, on-demand heating systems, and strain-gated logical circuits. The stretchable sensors show high sensitivity for strain and temperature changes on the skin. Furthermore, the micro-wrinkle structures of gold nanowires exhibit the negative gauge factor, which can be used for strain-gated logical circuits. Taken together, this multifunctional intelligent wearable device would be harnessed as a promising platform for futuristic electronic and biomedical applications.

2.
Adv Drug Deliv Rev ; 196: 114817, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37004938

RESUMO

Ocular drug delivery and therapy systems have been extensively investigated with various methods including direct injections, eye drops and contact lenses. Nowadays, smart contact lens systems are attracting a lot of attention for ocular drug delivery and therapy due to their minimally invasive or non-invasive characteristics, highly enhanced drug permeation, high bioavailability, and on-demand drug delivery. Furthermore, smart contact lens systems can be used for direct light delivery into the eyes for biophotonic therapy replacing the use of drugs. Here, we review smart contact lens systems which can be classified into two groups of drug-eluting contact lens and ocular device contact lens. More specifically, this review covers smart contact lens systems with nanocomposite-laden systems, polymeric film-incorporated systems, micro and nanostructure systems, iontophoretic systems, electrochemical systems, and phototherapy systems for ocular drug delivery and therapy. After that, we discuss the future opportunities, challenges and perspectives of smart contact lens systems for ocular drug delivery and therapy.


Assuntos
Lentes de Contato , Sistemas de Liberação de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Nanocompostos/química , Iontoforese , Eletroquímica , Fotoquímica , Humanos , Animais
3.
ACS Appl Mater Interfaces ; 15(13): 16471-16481, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36943445

RESUMO

Diabetic wound patients are often exposed to bacterial infections with delayed healing process due to hyperglycemia in the damaged skin tissue. Antimicrobial peptides (AMPs) have been investigated for the treatment of infection-induced diabetic wounds, but their low stability and toxicity have limited their further applications to diabetic chronic wound healing. Here, we developed a precisely controlled AMP-releasing injectable hydrogel platform, which could respond to infection-related materials of matrix metalloproteinases (MMPs) and reactive oxygen species (ROS). The injectable supramolecular hydrogel was prepared by the simple mixing of hyaluronic acid modified with cyclodextrin (HA-CD) and adamantane (Ad-HA). Ad-HA was conjugated with AMP via the cyclic peptide linker composed of MMP and ROS cleavable sequence (Ad-HA-AMP). Remarkably, only when the AMP-tethered hydrogel was exposed to both MMP and ROS simultaneously, AMP was released from the hydrogel, enabling the controlled release of AMP without causing cytotoxicity. In addition, we confirmed the enhanced serum stability of the Ad-HA-AMP conjugate. The antimicrobial activity of Ad-HA-AMP was maintained much longer than that of the native AMP. Finally, we could demonstrate the greatly improved wound-healing effect of AMP-tethered hydrogels with enhanced safety for the treatment of infection-induced diabetic chronic wounds. Taken together, we successfully demonstrated the feasibility of sHG-AMP for diabetic chronic wound healing.


Assuntos
Diabetes Mellitus , Hidrogéis , Humanos , Hidrogéis/química , Peptídeos Antimicrobianos , Espécies Reativas de Oxigênio/farmacologia , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA