Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Front Lupus ; 12023.
Artigo em Inglês | MEDLINE | ID: mdl-37799268

RESUMO

Background: Systemic lupus erythematosus (SLE) is a chronic autoimmune condition with complex causes involving genetic and environmental factors. While genome-wide association studies (GWASs) have identified genetic loci associated with SLE, the functional genomic elements responsible for disease development remain largely unknown. Mendelian Randomization (MR) is an instrumental variable approach to causal inference based on data from observational studies, where genetic variants are employed as instrumental variables (IVs). Methods: This study utilized a two-step strategy to identify causal genes for SLE. In the first step, the classical MR method was employed, assuming the absence of horizontal pleiotropy, to estimate the causal effect of gene expression on SLE. In the second step, advanced probabilistic MR methods (PMR-Egger, MRAID, and MR-MtRobin) were applied to the genes identified in the first step, considering horizontal pleiotropy, to filter out false positives. PMR-Egger and MRAID analyses utilized whole blood expression quantitative trait loci (eQTL) and SLE GWAS summary data, while MR-MtRobin analysis used an independent eQTL dataset from multiple immune cell types along with the same SLE GWAS data. Results: The initial MR analysis identified 142 genes, including 43 outside of chromosome 6. Subsequently, applying the advanced MR methods reduced the number of genes with significant causal effects on SLE to 66. PMR-Egger, MRAID, and MR-MtRobin, respectively, identified 13, 7, and 16 non-chromosome 6 genes with significant causal effects. All methods identified expression of PHRF1 gene as causal for SLE. A comprehensive literature review was conducted to enhance understanding of the functional roles and mechanisms of the identified genes in SLE development. Conclusions: The findings from the three MR methods exhibited overlapping genes with causal effects on SLE, demonstrating consistent results. However, each method also uncovered unique genes due to different modelling assumptions and technical factors, highlighting the complementary nature of the approaches. Importantly, MRAID demonstrated a reduced percentage of causal genes from the Major Histocompatibility complex (MHC) region on chromosome 6, indicating its potential in minimizing false positive findings. This study contributes to unraveling the mechanisms underlying SLE by employing advanced probabilistic MR methods to identify causal genes, thereby enhancing our understanding of SLE pathogenesis.

2.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833897

RESUMO

SjD (Sjögren's Disease) and SLE (Systemic Lupus Erythematosus) are similar diseases. There is extensive overlap between the two in terms of both clinical features and pathobiologic mechanisms. Shared genetic risk is a potential explanation of this overlap. In this study, we evaluated whether these diseases share causal genetic risk factors. We compared the causal genetic risk for SLE and SjD using three complementary approaches. First, we examined the published GWAS results for these two diseases by analyzing the predicted causal gene protein-protein interaction networks of both diseases. Since this method does not account for overlapping risk intervals, we examined whether such intervals also overlap. Third, we used two-sample Mendelian randomization (two sample MR) using GWAS summary statistics to determine whether risk variants for SLE are causal for SjD and vice versa. We found that both the putative causal genes and the genomic risk intervals for SLE and SjD overlap 28- and 130-times more than expected by chance (p < 1.1 × 10-24 and p < 1.1 × 10-41, respectively). Further, two sample MR analysis confirmed that alone or in aggregate, SLE is likely causal for SjD and vice versa. [SjD variants predicting SLE: OR = 2.56; 95% CI (1.98-3.30); p < 1.4 × 10-13, inverse-variance weighted; SLE variants predicting SjD: OR = 1.36; 95% CI (1.26-1.47); p < 1.6 × 10-11, inverse-variance weighted]. Notably, some variants have disparate impact in terms of effect size across disease states. Overlapping causal genetic risk factors were found for both diseases using complementary approaches. These observations support the hypothesis that shared genetic factors drive the clinical and pathobiologic overlap between these diseases. Our study has implications for both differential diagnosis and future genetic studies of these two conditions.


Assuntos
Lúpus Eritematoso Sistêmico , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/genética , Síndrome de Sjogren/complicações , Lúpus Eritematoso Sistêmico/genética , Fatores de Risco , Causalidade , Genômica , Estudo de Associação Genômica Ampla
3.
PLoS Genet ; 19(3): e1010701, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36996023

RESUMO

[This corrects the article DOI: 10.1371/journal.pgen.1004524.].

4.
Front Genet ; 13: 1008582, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160011

RESUMO

A major goal of genetics research is to elucidate mechanisms explaining how genetic variation contributes to phenotypic variation. The genetic variants identified in genome-wide association studies (GWASs) generally explain only a small proportion of heritability of phenotypic traits, the so-called missing heritability problem. Recent evidence suggests that additional common variants beyond lead GWAS variants contribute to phenotypic variation; however, their mechanistic underpinnings generally remain unexplored. Herein, we undertake a study of haplotype-specific mechanisms of gene regulation at 8p23.1 in the human genome, a region associated with a number of complex diseases. The FAM167A-BLK locus in this region has been consistently found in the genome-wide association studies (GWASs) of systemic lupus erythematosus (SLE) in all major ancestries. Our haplotype-specific chromatin interaction (Hi-C) experiments, allele-specific enhancer activity measurements, genetic analyses, and epigenome editing experiments revealed that: 1) haplotype-specific long-range chromatin interactions are prevalent in 8p23.1; 2) BLK promoter and cis-regulatory elements cooperatively interact with haplotype-specificity; 3) genetic variants at distal regulatory elements are allele-specific modifiers of the promoter variants at FAM167A-BLK; 4) the BLK promoter interacts with and, as an enhancer-like promoter, regulates FAM167A expression and 5) local allele-specific enhancer activities are influenced by global haplotype structure due to chromatin looping. Although systemic lupus erythematosus causal variants at the FAM167A-BLK locus are thought to reside in the BLK promoter region, our results reveal that genetic variants at distal regulatory elements modulate promoter activity, changing BLK and FAM167A gene expression and disease risk. Our results suggest that global haplotype-specific 3-dimensional chromatin looping architecture has a strong influence on local allelic BLK and FAM167A gene expression, providing mechanistic details for how regional variants controlling the BLK promoter may influence disease risk.

5.
Open Forum Infect Dis ; 9(12): ofac641, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36601554

RESUMO

Background: The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has demonstrated the need to share data and biospecimens broadly to optimize clinical outcomes for US military Veterans. Methods: In response, the Veterans Health Administration established VA SHIELD (Science and Health Initiative to Combat Infectious and Emerging Life-threatening Diseases), a comprehensive biorepository of specimens and clinical data from affected Veterans to advance research and public health surveillance and to improve diagnostic and therapeutic capabilities. Results: VA SHIELD now comprises 12 sites collecting de-identified biospecimens from US Veterans affected by SARS-CoV-2. In addition, 2 biorepository sites, a data processing center, and a coordinating center have been established under the direction of the Veterans Affairs Office of Research and Development. Phase 1 of VA SHIELD comprises 34 157 samples. Of these, 83.8% had positive tests for SARS-CoV-2, with the remainder serving as contemporaneous controls. The samples include nasopharyngeal swabs (57.9%), plasma (27.9%), and sera (12.5%). The associated clinical and demographic information available permits the evaluation of biological data in the context of patient demographics, clinical experience and management, vaccinations, and comorbidities. Conclusions: VA SHIELD is representative of US national diversity with a significant potential to impact national healthcare. VA SHIELD will support future projects designed to better understand SARS-CoV-2 and other emergent healthcare crises. To the extent possible, VA SHIELD will facilitate the discovery of diagnostics and therapeutics intended to diminish COVID-19 morbidity and mortality and to reduce the impact of new emerging threats to the health of US Veterans and populations worldwide.

6.
Genome Res ; 31(12): 2185-2198, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34799401

RESUMO

The interplay between environmental and genetic factors plays a key role in the development of many autoimmune diseases. In particular, the Epstein-Barr virus (EBV) is an established contributor to multiple sclerosis, lupus, and other disorders. Previously, we showed that the EBV nuclear antigen 2 (EBNA2) transactivating protein occupies up to half of the risk loci for a set of seven autoimmune disorders. To further examine the mechanistic roles played by EBNA2 at these loci on a genome-wide scale, we globally examined gene expression, chromatin accessibility, chromatin looping, and EBNA2 binding in a B cell line that was (1) uninfected, (2) infected with a strain of EBV lacking EBNA2, or (3) infected with a strain that expresses EBNA2. We identified more than 400 EBNA2-dependent differentially expressed human genes and more than 5000 EBNA2 binding events in the human genome. ATAC-seq analysis revealed more than 2000 regions in the human genome with EBNA2-dependent chromatin accessibility, and HiChIP data revealed more than 1700 regions where EBNA2 altered chromatin looping interactions. Autoimmune genetic risk loci were highly enriched at the sites of these EBNA2-dependent chromatin-altering events. We present examples of autoimmune risk genotype-dependent EBNA2 events, nominating genetic risk mechanisms for autoimmune risk loci such as ZMIZ1 Taken together, our results reveal important interactions between host genetic variation and EBNA2-driven disease mechanisms. Further, our study highlights a critical role for EBNA2 in rewiring human gene regulatory programs through rearrangement of the chromatin landscape and nominates these interactions as components of genetic mechanisms that influence the risk of multiple autoimmune diseases.

7.
Hum Mutat ; 42(12): 1602-1614, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34467602

RESUMO

Preterm birth (PTB), or birth that occurs earlier than 37 weeks of gestational age, is a major contributor to infant mortality and neonatal hospitalization. Mutations in the mitochondrial genome (mtDNA) have been linked to various rare mitochondrial disorders and may be a contributing factor in PTB given that maternal genetic factors have been strongly linked to PTB. However, to date, no study has found a conclusive connection between a particular mtDNA variant and PTB. Given the high mtDNA copy number per cell, an automated pipeline was developed for detecting mtDNA variants using low-coverage whole-genome sequencing (lcWGS) data. The pipeline was first validated against samples of known heteroplasmy, and then applied to 929 samples from a PTB cohort from diverse ethnic backgrounds with an average gestational age of 27.18 weeks (range: 21-30). Our new pipeline successfully identified haplogroups and a large number of mtDNA variants in this large PTB cohort, including 8 samples carrying known pathogenic variants and 47 samples carrying rare mtDNA variants. These results confirm that lcWGS can be utilized to reliably identify mtDNA variants. These mtDNA variants may make a contribution toward preterm birth in a small proportion of live births.


Assuntos
Genoma Mitocondrial , Nascimento Prematuro , DNA Mitocondrial/genética , Humanos , Lactente , Recém-Nascido , Mitocôndrias/genética , Nascimento Prematuro/genética , Sequenciamento Completo do Genoma
8.
Mol Reprod Dev ; 88(2): 141-157, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33469999

RESUMO

BRDT, a member of the BET family of double bromodomain-containing proteins, is essential for spermatogenesis in the mouse and has been postulated to be a key regulator of transcription in meiotic and post-meiotic cells. To understand the function of BRDT in these processes, we first characterized the genome-wide distribution of the BRDT binding sites, in particular within gene units, by ChIP-Seq analysis of enriched fractions of pachytene spermatocytes and round spermatids. In both cell types, BRDT binding sites were mainly located in promoters, first exons, and introns of genes. BRDT binding sites in promoters overlapped with several histone modifications and histone variants associated with active transcription, and were enriched for consensus sequences for specific transcription factors, including MYB, RFX, ETS, and ELF1 in pachytene spermatocytes, and JunD, c-Jun, CRE, and RFX in round spermatids. Subsequent integration of the ChIP-seq data with available transcriptome data revealed that stage-specific gene expression programs are associated with BRDT binding to their gene promoters, with most of the BDRT-bound genes being upregulated. Gene Ontology analysis further identified unique sets of genes enriched in diverse biological processes essential for meiosis and spermiogenesis between the two cell types, suggesting distinct developmentally stage-specific functions for BRDT. Taken together, our data suggest that BRDT cooperates with different transcription factors at distinctive chromatin regions within gene units to regulate diverse downstream target genes that function in male meiosis and spermiogenesis.


Assuntos
Epigenômica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Nucleares/fisiologia , Espermatogênese/genética , Fatores de Transcrição/fisiologia , Animais , Sítios de Ligação , Sequenciamento de Cromatina por Imunoprecipitação , DNA/metabolismo , Masculino , Meiose/genética , Meiose/fisiologia , Camundongos , Regiões Promotoras Genéticas , Espermátides/fisiologia , Espermatogênese/fisiologia
9.
Nucleic Acids Res ; 48(6): 3119-3133, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32086528

RESUMO

Aberrant activation of the TAL1 is associated with up to 60% of T-ALL cases and is involved in CTCF-mediated genome organization within the TAL1 locus, suggesting that CTCF boundary plays a pathogenic role in T-ALL. Here, we show that -31-Kb CTCF binding site (-31CBS) serves as chromatin boundary that defines topologically associating domain (TAD) and enhancer/promoter interaction required for TAL1 activation. Deleted or inverted -31CBS impairs TAL1 expression in a context-dependent manner. Deletion of -31CBS reduces chromatin accessibility and blocks long-range interaction between the +51 erythroid enhancer and TAL1 promoter-1 leading to inhibition of TAL1 expression in erythroid cells, but not T-ALL cells. However, in TAL1-expressing T-ALL cells, the leukemia-prone TAL1 promoter-IV specifically interacts with the +19 stem cell enhancer located 19 Kb downstream of TAL1 and this interaction is disrupted by the -31CBS inversion in T-ALL cells. Inversion of -31CBS in Jurkat cells alters chromatin accessibility, histone modifications and CTCF-mediated TAD leading to inhibition of TAL1 expression and TAL1-driven leukemogenesis. Thus, our data reveal that -31CBS acts as critical regulator to define +19-enhancer and the leukemic prone promoter IV interaction for TAL1 activation in T-ALL. Manipulation of CTCF boundary can alter TAL1 TAD and oncogenic transcription networks in leukemogenesis.


Assuntos
Fator de Ligação a CCCTC/genética , Carcinogênese/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Sítios de Ligação/genética , Cromatina/genética , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica , Genoma Humano/genética , Código das Histonas/genética , Humanos , Células Jurkat , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Ligação Proteica/genética , Transcrição Gênica/genética
10.
Oncogene ; 38(22): 4232-4249, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30718920

RESUMO

Lysine methylation of histones and non-histone substrates by the SET domain containing protein lysine methyltransferase (KMT) G9a/EHMT2 governs transcription contributing to apoptosis, aberrant cell growth, and pluripotency. The positioning of chromosomes within the nuclear three-dimensional space involves interactions between nuclear lamina (NL) and the lamina-associated domains (LAD). Contact of individual LADs with the NL are dependent upon H3K9me2 introduced by G9a. The mechanisms governing the recruitment of G9a to distinct subcellular sites, into chromatin or to LAD, is not known. The cyclin D1 gene product encodes the regulatory subunit of the holoenzyme that phosphorylates pRB and NRF1 thereby governing cell-cycle progression and mitochondrial metabolism. Herein, we show that cyclin D1 enhanced H3K9 dimethylation though direct association with G9a. Endogenous cyclin D1 was required for the recruitment of G9a to target genes in chromatin, for G9a-induced H3K9me2 of histones, and for NL-LAD interaction. The finding that cyclin D1 is required for recruitment of G9a to target genes in chromatin and for H3K9 dimethylation, identifies a novel mechanism coordinating protein methylation.


Assuntos
Ciclina D1/metabolismo , Metilação de DNA/fisiologia , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Ciclo Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/metabolismo , Cromossomos/fisiologia , Células HEK293 , Humanos , Células MCF-7 , Ligação Proteica/fisiologia
11.
Blood ; 132(8): 837-848, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-29760161

RESUMO

HOX gene dysregulation is a common feature of acute myeloid leukemia (AML). The molecular mechanisms underlying aberrant HOX gene expression and associated AML pathogenesis remain unclear. The nuclear protein CCCTC-binding factor (CTCF), when bound to insulator sequences, constrains temporal HOX gene-expression patterns within confined chromatin domains for normal development. Here, we used targeted pooled CRISPR-Cas9-knockout library screening to interrogate the function of CTCF boundaries in the HOX gene loci. We discovered that the CTCF binding site located between HOXA7 and HOXA9 genes (CBS7/9) is critical for establishing and maintaining aberrant HOXA9-HOXA13 gene expression in AML. Disruption of the CBS7/9 boundary resulted in spreading of repressive H3K27me3 into the posterior active HOXA chromatin domain that subsequently impaired enhancer/promoter chromatin accessibility and disrupted ectopic long-range interactions among the posterior HOXA genes. Consistent with the role of the CBS7/9 boundary in HOXA locus chromatin organization, attenuation of the CBS7/9 boundary function reduced posterior HOXA gene expression and altered myeloid-specific transcriptome profiles important for pathogenesis of myeloid malignancies. Furthermore, heterozygous deletion of the CBS7/9 chromatin boundary in the HOXA locus reduced human leukemic blast burden and enhanced survival of transplanted AML cell xenograft and patient-derived xenograft mouse models. Thus, the CTCF boundary constrains the normal gene-expression program, as well as plays a role in maintaining the oncogenic transcription program for leukemic transformation. The CTCF boundaries may serve as novel therapeutic targets for the treatment of myeloid malignancies.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Montagem e Desmontagem da Cromatina , Regulação Leucêmica da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/metabolismo , Transcrição Gênica , Animais , Fator de Ligação a CCCTC/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Proteínas de Neoplasias/genética
12.
PLoS One ; 9(12): e115614, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25545785

RESUMO

UNLABELLED: To explore the potential influence of the polymorphic 8p23.1 inversion on known autoimmune susceptibility risk at or near BLK locus, we validated a new bioinformatics method that utilizes SNP data to enable accurate, high-throughput genotyping of the 8p23.1 inversion in a Caucasian population. METHODS: Principal components analysis (PCA) was performed using markers inside the inversion territory followed by k-means cluster analyses on 7416 European derived and 267 HapMaP CEU and TSI samples. A logistic regression conditional analysis was performed. RESULTS: Three subgroups have been identified; inversion homozygous, heterozygous and non-inversion homozygous. The status of inversion was further validated using HapMap samples that had previously undergone Fluorescence in situ hybridization (FISH) assays with a concordance rate of above 98%. Conditional analyses based on the status of inversion were performed. We found that overall association signals in the BLK region remain significant after controlling for inversion status. The proportion of lupus cases and controls (cases/controls) in each subgroup was determined to be 0.97 for the inverted homozygous group (1067 cases and 1095 controls), 1.12 for the inverted heterozygous group (1935 cases 1717 controls) and 1.36 for non-inverted subgroups (924 cases and 678 controls). After calculating the linkage disequilibrium between inversion status and lupus risk haplotype we found that the lupus risk haplotype tends to reside on non-inversion background. As a result, a new association effect between non-inversion status and lupus phenotype has been identified ((p = 8.18×10(-7), OR = 1.18, 95%CI = 1.10-1.26). CONCLUSION: Our results demonstrate that both known lupus risk haplotype and inversion status act additively in the pathogenesis of lupus. Since inversion regulates expression of many genes in its territory, altered expression of other genes might also be involved in the development of lupus.


Assuntos
Cromossomos Humanos Par 8/genética , Lúpus Eritematoso Sistêmico/genética , Inversão de Sequência , Quinases da Família src/genética , Estudos de Casos e Controles , Feminino , Loci Gênicos , Haplótipos , Homozigoto , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Estados Unidos , População Branca
13.
Nat Commun ; 5: 5780, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25531312

RESUMO

Epigenetic factors have been implicated in the regulation of CD4(+) T-cell differentiation. Jmjd3 plays a role in many biological processes, but its in vivo function in T-cell differentiation remains unknown. Here we report that Jmjd3 ablation promotes CD4(+) T-cell differentiation into Th2 and Th17 cells in the small intestine and colon, and inhibits T-cell differentiation into Th1 cells under different cytokine-polarizing conditions and in a Th1-dependent colitis model. Jmjd3 deficiency also restrains the plasticity of the conversion of Th2, Th17 or Treg cells to Th1 cells. The skewing of T-cell differentiation is concomitant with changes in the expression of key transcription factors and cytokines. H3K27me3 and H3K4me3 levels in Jmjd3-deficient cells are correlated with altered gene expression through interactions with specific transcription factors. Our results identify Jmjd3 as an epigenetic factor in T-cell differentiation via changes in histone methylation and target gene expression.


Assuntos
Linfócitos T CD4-Positivos/enzimologia , Diferenciação Celular , Histona Desmetilases com o Domínio Jumonji/metabolismo , Animais , Linfócitos T CD4-Positivos/citologia , Células Cultivadas , Histona Desmetilases com o Domínio Jumonji/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th1/citologia , Células Th1/enzimologia , Células Th17/citologia , Células Th17/enzimologia , Células Th2/citologia , Células Th2/enzimologia
14.
PLoS Genet ; 10(7): e1004524, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25079229

RESUMO

Histone demethylases have emerged as important players in developmental processes. Jumonji domain containing-3 (Jmjd3) has been identified as a key histone demethylase that plays a critical role in the regulation of gene expression; however, the in vivo function of Jmjd3 in embryonic development remains largely unknown. To this end, we generated Jmjd3 global and conditional knockout mice. Global deletion of Jmjd3 induces perinatal lethality associated with defective lung development. Tissue and stage-specific deletion revealed that Jmjd3 is dispensable in the later stage of embryonic lung development. Jmjd3 ablation downregulates the expression of genes critical for lung development and function, including AQP-5 and SP-B. Jmjd3-mediated alterations in gene expression are associated with locus-specific changes in the methylation status of H3K27 and H3K4. Furthermore, Jmjd3 is recruited to the SP-B promoter through interactions with the transcription factor Nkx2.1 and the epigenetic protein Brg1. Taken together, these findings demonstrate that Jmjd3 plays a stage-dependent and locus-specific role in the mouse lung development. Our study provides molecular insights into the mechanisms by which Jmjd3 regulates target gene expression in the embryonic stages of lung development.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Histona Desmetilases com o Domínio Jumonji/genética , Pulmão/metabolismo , Animais , DNA Helicases/biossíntese , Histona Desmetilases com o Domínio Jumonji/metabolismo , Pulmão/embriologia , Pulmão/crescimento & desenvolvimento , Lisina , Camundongos , Proteínas Nucleares/biossíntese , Regiões Promotoras Genéticas , Proteína B Associada a Surfactante Pulmonar/biossíntese , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/biossíntese
15.
Cell Res ; 23(11): 1256-69, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23938295

RESUMO

Although the function of DNA methylation in gene promoter regions is well established in transcriptional repression, the function of the evolutionarily conserved widespread distribution of DNA methylation in gene body regions remains incompletely understood. Here, we show that DNA methylation is enriched in included alternatively spliced exons (ASEs), and that inhibition of DNA methylation results in aberrant splicing of ASEs. The methyl-CpG-binding protein MeCP2 is enriched in included ASEs, particularly those that are also highly methylated, and inhibition of DNA methylation disrupts specific targeting of MeCP2 to exons. Interestingly, ablation of MeCP2 results in increased histone acetylation and aberrant ASE-skipping events. We further show that inhibition of histone deacetylase (HDAC) activity leads to exon skipping that shows a highly significant degree of overlap with that caused by MeCP2 knockdown. Together, our data indicate that intragenic DNA methylation operates in exon definition to modulate alternative RNA splicing and can enhance exon recognition via recruitment of the multifunctional protein MeCP2, which thereby maintains local histone hypoacetylation through the subsequent recruitment of HDACs.


Assuntos
Processamento Alternativo/genética , Metilação de DNA/genética , Éxons/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Linhagem Celular , Células HCT116 , Humanos
16.
Front Biol (Beijing) ; 8(1): 50-59, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23399987

RESUMO

The application of stem cells to regenerative medicine depends on a thorough understanding of the molecular mechanisms underlying their pluripotency. Many studies have identified key transcription factor-regulated transcriptional networks and chromatin landscapes of embryonic and a number of adult stem cells. In addition, recent publications have revealed another interesting molecular feature of stem cells- a distinct alternative splicing pattern. Thus, it is possible that both the identity and activity of stem cells are maintained by stem cell-specific mRNA isoforms, while switching to different isoforms ensures proper differentiation. In this review, we will discuss the generality of mRNA isoform switching and its interaction with other molecular mechanisms to regulate stem cell pluripotency, as well as the reprogramming process in which differentiated cells are induced to become pluripotent stem cell-like cells (iPSCs).

17.
BMC Genomics ; 13: 458, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22950410

RESUMO

BACKGROUND: Chromosome 17q21.31 contains a common inversion polymorphism of approximately 900 kb in populations with European ancestry. Two divergent MAPT haplotypes, H1 and H2 are described with distinct linkage disequilibrium patterns across the region reflecting the inversion status at this locus. The MAPT H1 haplotype has been associated with progressive supranuclear palsy, corticobasal degeneration, Parkinson's disease and Alzheimer's disease, while the H2 is linked to recurrent deletion events associated with the 17q21.31 microdeletion syndrome, a disease characterized by developmental delay and learning disability. RESULTS: In this study, we investigate the effect of the inversion on the expression of genes in the 17q21.31 region. We find the expression of several genes in and at the borders of the inversion to be affected; specific either to whole blood or different regions of the human brain. The H1 haplotype was found to be associated with an increased expression of LRRC37A4, PLEKH1M and MAPT. In contrast, a decreased expression of MGC57346, LRRC37A and CRHR1 was associated with H1. CONCLUSIONS: Studies thus far have focused on the expression of MAPT in the inversion region. However, our results show that the inversion status affects expression of other genes in the 17q21.31 region as well. Given the link between the inversion status and different neurological diseases, these genes may also be involved in disease pathology, possibly in a tissue-specific manner.


Assuntos
Inversão Cromossômica , Cromossomos Humanos Par 17/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Proteínas tau/genética , Doença de Alzheimer/genética , Sequência de Bases , Sangue/metabolismo , Encéfalo/patologia , Europa (Continente) , Feminino , Expressão Gênica , Haplótipos/genética , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/genética , Polimorfismo Genético , Análise de Componente Principal , Análise de Sequência de DNA , Paralisia Supranuclear Progressiva/genética
18.
Genome Biol ; 13(8): R68, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22897906

RESUMO

BACKGROUND: Histone post-translational modifications (PTMs) constitute a branch of epigenetic mechanisms that can control the expression of eukaryotic genes in a heritable manner. Recent studies have identified several PTM-binding proteins containing diverse specialized domains whose recognition of specific PTM sites leads to gene activation or repression. Here, we present a high-throughput proteogenomic platform designed to characterize the nucleosomal make-up of chromatin enriched with a set of histone PTM binding proteins known as histone PTM readers. We support our findings with gene expression data correlating to PTM distribution. RESULTS: We isolated human mononucleosomes bound by the bromodomain-containing proteins Brd2, Brd3 and Brd4, and by the chromodomain-containing heterochromatin proteins HP1ß and HP1α. Histone PTMs were quantified by mass spectrometry (ChIP-qMS), and their associated DNAs were mapped using deep sequencing. Our results reveal that Brd- and HP1-bound nucleosomes are enriched in histone PTMs consistent with actively transcribed euchromatin and silent heterochromatin, respectively. Data collected using RNA-Seq show that Brd-bound sites correlate with highly expressed genes. In particular, Brd3 and Brd4 are most enriched on nucleosomes located within HOX gene clusters, whose expression is reduced upon Brd4 depletion by short hairpin RNA. CONCLUSIONS: Proteogenomic mapping of histone PTM readers, alongside the characterization of their local chromatin environments and transcriptional information, should prove useful for determining how histone PTMs are bound by these readers and how they contribute to distinct transcriptional states.


Assuntos
Mapeamento Cromossômico , Histonas/metabolismo , Nucleossomos/genética , Processamento de Proteína Pós-Traducional , Proteínas de Ciclo Celular , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 19/metabolismo , Epigênese Genética , Genômica , Heterocromatina/genética , Heterocromatina/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Família Multigênica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Cell Res ; 22(3): 490-503, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22270183

RESUMO

Recent epigenomic studies have predicted thousands of potential enhancers in the human genome. However, there has not been systematic characterization of target promoters for these potential enhancers. Using H3K4me2 as a mark for active enhancers, we identified genome-wide EP interactions in human CD4(+) T cells. Among the 6 520 long-distance chromatin interactions, we identify 2 067 enhancers that interact with 1 619 promoters and enhance their expression. These enhancers exist in accessible chromatin regions and are associated with various histone modifications and polymerase II binding. The promoters with interacting enhancers are expressed at higher levels than those without interacting enhancers, and their expression levels are positively correlated with the number of interacting enhancers. Interestingly, interacting promoters are co-expressed in a tissue-specific manner. We also find that chromosomes are organized into multiple levels of interacting domains. Our results define a global view of EP interactions and provide a data set to further understand mechanisms of enhancer targeting and long-range chromatin organization. The Gene Expression Omnibus accession number for the raw and analyzed chromatin interaction data is GSE32677.


Assuntos
Cromatina/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/genética , Genoma Humano/genética , Regiões Promotoras Genéticas/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos
20.
Methods Mol Biol ; 815: 91-102, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22130986

RESUMO

RNA editing can lead to amino acid substitutions in protein sequences, alternative pre-mRNA splicing, and changes in gene expression levels. The exact in vivo modes of interaction of the RNA editing enzymes with their targets are not well understood. Alterations in RNA editing have been linked to various human disorders and the improved understanding of the editing mechanism and specificity can explain the phenotypes that result from misregulation of RNA editing. Unbiased high-throughput methods of detection of RNA editing events genome-wide in human cells are necessary for the task of deciphering the RNA editing regulatory code. With the rapidly falling cost of genome resequencing, the future method of choice for the detection of RNA editing events will be whole-genome gDNA and cDNA sequencing. We describe a detailed procedure for the computational identification of RNA editing targets using the data from the deep sequencing of DNA and RNA from the peripheral blood mononuclear cells of a human individual with severe hemophilia A who is resistant to HIV infection. Interestingly, we find that mRNAs of the cyclin-dependent kinase CDK13 and the DNA repair enzyme NEIL1 undergo extensive A → I RNA editing that leads to amino acid substitutions in protein sequences.


Assuntos
Mineração de Dados/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Processamento Pós-Transcricional do RNA , Algoritmos , Sequência de Bases , DNA/genética , DNA/isolamento & purificação , Genoma Humano , Humanos , Leucócitos Mononucleares , Modelos Genéticos , RNA/genética , RNA/isolamento & purificação , Alinhamento de Sequência , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA