Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 204(11): e0027322, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36165621

RESUMO

Bacteria use adhesins to colonize different surfaces and form biofilms. The species of the Caulobacterales order use a polar adhesin called holdfast, composed of polysaccharides, proteins, and DNA, to irreversibly adhere to surfaces. In Caulobacter crescentus, a freshwater Caulobacterales species, the holdfast is anchored at the cell pole via the holdfast anchor (Hfa) proteins HfaA, HfaB, and HfaD. HfaA and HfaD colocalize with holdfast and are thought to form amyloid-like fibers that anchor holdfast to the cell envelope. HfaB, a lipoprotein, is required for the translocation of HfaA and HfaD to the cell surface. Deletion of the anchor proteins leads to a severe defect in adherence resulting from holdfast not being properly attached to the cell and shed into the medium. This phenotype is greater in a ΔhfaB mutant than in a ΔhfaA ΔhfaD double mutant, suggesting that HfaB has other functions besides the translocation of HfaA and HfaD. Here, we identify an additional HfaB-dependent holdfast anchoring protein, HfaE, which is predicted to be a secreted protein. HfaE is highly conserved among Caulobacterales species, with no predicted function. In planktonic culture, hfaE mutants produce holdfasts and rosettes similar to those produced by the wild type. However, holdfasts from hfaE mutants bind to the surface but are unable to anchor cells, similarly to other anchor mutants. We showed that fluorescently tagged HfaE colocalizes with holdfast and that HfaE forms an SDS-resistant high-molecular-weight species consistent with amyloid fiber formation. We propose that HfaE is a novel holdfast anchor protein and that HfaE functions to link holdfast material to the cell envelope. IMPORTANCE For surface attachment and biofilm formation, bacteria produce adhesins that are composed of polysaccharides, proteins, and DNA. Species of the Caulobacterales produce a specialized polar adhesin, holdfast, which is required for permanent attachment to surfaces. In this study, we evaluate the role of a newly identified holdfast anchor protein, HfaE, in holdfast anchoring to the cell surface in two different members of the Caulobacterales with drastically different environments. We show that HfaE plays an important role in adhesion and biofilm formation in the Caulobacterales. Our results provide insights into bacterial adhesins and how they interact with the cell envelope and surfaces.


Assuntos
Aderência Bacteriana , Caulobacter crescentus , Aderência Bacteriana/fisiologia , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Caulobacter crescentus/metabolismo , Biofilmes , Polissacarídeos/metabolismo
2.
iScience ; 24(9): 103071, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34568792

RESUMO

Differences in ionic strength, pH, temperature, shear forces, and other environmental factors impact adhesion, and organisms have evolved various strategies to optimize their adhesins for their specific environmental conditions. Many species of Alphaproteobacteria, including members of the order Caulobacterales, use a polar adhesin, called holdfast, for surface attachment and subsequent biofilm formation in both freshwater and marine environments. Hirschia baltica, a marine member of Caulobacterales, produces a holdfast adhesin that tolerates a drastically higher ionic strength than the holdfast produced by its freshwater relative, Caulobacter crescentus. In this work, we show that the holdfast polysaccharide deacetylase HfsH plays an important role in adherence in high-ionic-strength environments. We show that increasing expression of HfsH improves holdfast binding in high-ionic-strength environments. We conclude that HfsH plays a role in modulating holdfast binding at high ionic strength and hypothesize that this modulation occurs through varied deacetylation of holdfast polysaccharides.

3.
J Bacteriol ; 201(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30858293

RESUMO

Bacterial adhesion is affected by environmental factors, such as ionic strength, pH, temperature, and shear forces. Therefore, marine bacteria must have developed adhesins with different compositions and structures than those of their freshwater counterparts to adapt to their natural environment. The dimorphic alphaproteobacterium Hirschia baltica is a marine budding bacterium in the clade CaulobacteralesH. baltica uses a polar adhesin, the holdfast, located at the cell pole opposite the reproductive stalk, for surface attachment and cell-cell adhesion. The holdfast adhesin has been best characterized in Caulobacter crescentus, a freshwater member of the Caulobacterales, and little is known about holdfast compositions and properties in marine Caulobacterales Here, we use H. baltica as a model to characterize holdfast properties in marine Caulobacterales We show that freshwater and marine Caulobacterales use similar genes in holdfast biogenesis and that these genes are highly conserved among the species in the two genera. We determine that H. baltica produces a larger holdfast than C. crescentus and that the holdfasts have different chemical compositions, as they contain N-acetylglucosamine and galactose monosaccharide residues and proteins but lack DNA. Finally, we show that H. baltica holdfasts tolerate higher ionic strength than those of C. crescentus We conclude that marine Caulobacterales holdfasts have physicochemical properties that maximize binding in high-ionic-strength environments.IMPORTANCE Most bacteria spend a large part of their life spans attached to surfaces, forming complex multicellular communities called biofilms. Bacteria can colonize virtually any surface, and therefore, they have adapted to bind efficiently in very different environments. In this study, we compare the adhesive holdfasts produced by the freshwater bacterium C. crescentus and a relative, the marine bacterium H. baltica We show that H. baltica holdfasts have a different morphology and chemical composition and tolerate high ionic strength. Our results show that the H. baltica holdfast is an excellent model to study the effect of ionic strength on adhesion and provides insights into the physicochemical properties required for adhesion in the marine environment.


Assuntos
Acetilglucosamina/metabolismo , Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/metabolismo , Caulobacter crescentus/fisiologia , Aderência Bacteriana/fisiologia , Biofilmes/crescimento & desenvolvimento , Água Doce/microbiologia , Monossacarídeos/metabolismo , Concentração Osmolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA