Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chempluschem ; 89(6): e202300736, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38332534

RESUMO

The title radical R⋅, synthesized by reduction of the corresponding cation R+, is thermally stable up to ~380 K in the crystalline state under anaerobic conditions. With SQUID magnetometry, single-crystal and powder XRD, solid-state EPR and TG-DSC, reversible spin-Peierls transition between diamagnetic and paramagnetic states featuring ~10 K hysteretic loop is observed for R⋅ in the temperature range ~310-325 K; ΔH=~2.03 kJ mol-1 and ΔS=~6.23 J mol-1 K-1. The transition is accompanied by mechanical movement of the crystals, i. e., by thermosalient behavior. The low-temperature diamagnetic P-1 polymorph of R⋅ consists of R⋅2 π-dimers arranged in (…R⋅2…)n π-stacks; whereas the high-temperature paramagnetic P21/c polymorph, of uniform (…R⋅…)n π-stacks. With the XRD geometries, CASSCF and broken-symmetry DFT jointly suggest strong antiferromagnetic (AF) interactions within R⋅2 and weak between R⋅2 for the (…R⋅2…)n stacks; and moderate AF interactions between R⋅ for the (…R⋅…)n stacks. The fully hydrocarbon archetype of R⋅ does not reveal the aforementioned properties. Thus, the fluorinated 1,3,2-benzodithiazolyls pave a new pathway in the design and synthesis of metal-less magnetically-bistable materials.

2.
Materials (Basel) ; 16(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37763493

RESUMO

The reduction of Co-based oxides doped with Al3+ ions has been studied using in situ XRD and TPR techniques. Al3+-modified Co3O4 oxides with the Al mole fraction Al/(Co + Al) = 1/6; 1/7.5 were prepared via coprecipitation, with further calcination at 500 and 850 °C. Using XRD and HAADF-STEM combined with EDS element mapping, the Al3+ cations were dissolved in the Co3O4 lattice; however, the cation distribution differed and depended on the calcination temperature. Heating at 500 °C led to the formation of an inhomogeneous (Co,Al)3O4 solid solution; further treatment at 850 °C provoked the partial decomposition of mixed Co-Al oxides and the formation of particles with an Al-depleted interior and Al-enriched surface. It has been shown that the reduction of cobalt oxide by hydrogen occurs via the following transformations: (Co,Al)3O4 → (Co,Al)O → Co. Depending on the Al distribution, the course of reduction changes. In the case of the inhomogeneous (Co,Al)3O4 solid solution, Al stabilizes intermediate Co(II)-Al(III) oxides during reduction. When Al3+ ions are predominantly on the surface of the Co3O4 particles, the intermediate compound consists of Al-depleted and Al-enriched Co(II)-Al(III) oxides, which are reduced independently. Different distributions of elemental Co and Al in mixed oxides simulate different types of the interaction phase in Co3O4/γ-Al2O3-supported catalysts. These changes in the reduction properties can significantly affect the state of an active component of the Co-based catalysts.

3.
Nanomaterials (Basel) ; 13(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570494

RESUMO

In this study, we proposed photocatalysts based on graphite-like carbon nitride with a low content (0.01-0.5 wt.%) of noble metals (Pd, Rh) for hydrogen evolution under visible light irradiation. As precursors of rhodium and palladium, labile aqua and nitrato complexes [Rh2(H2O)8(µ-OH)2](NO3)4∙4H2O and (Et4N)2[Pd(NO3)4], respectively, were proposed. To obtain metallic particles, reduction was carried out in H2 at 400 °C. The synthesized photocatalysts were studied using X-ray diffraction, X-ray photoelectron spectroscopy, UV-Vis diffuse reflectance spectroscopy and high-resolution transmission electron microscopy. The activity of the photocatalysts was tested in the hydrogen evolution from aqueous and aqueous alkaline solutions of TEOA under visible light with a wavelength of 428 nm. It was shown that the activity for the 0.01-0.5% Rh/g-C3N4 series is higher than in the case of the 0.01-0.5% Pd/g-C3N4 photocatalysts. The 0.5% Rh/g-C3N4 sample showed the highest activity per gram of catalyst, equal to 3.9 mmol gcat-1 h-1, whereas the most efficient use of the metal particles was found over the 0.1% Rh/g-C3N4 photocatalyst, with the activity of 2.4 mol per gram of Rh per hour. The data obtained are of interest and can serve for further research in the field of photocatalytic hydrogen evolution using noble metals as cocatalysts.

4.
Phys Chem Chem Phys ; 25(31): 20892-20902, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37526576

RESUMO

A mixed oxide of silver and nickel AgNiO2 was obtained via co-precipitation in alkaline medium. This oxide demonstrates room temperature activity in the reaction of ethylene epoxidation with a high selectivity (up to 70%). Using the PDF method, it was found that the initial structure of AgNiO2 contains stacking faults and silver vacancies, which cause the nonstoichiometry of the oxide (Ag/Ni < 1). It has been established that on the initial surface of AgNiO2 oxide, silver state can be considered as an intermediate between Ag2O and Ag0 (i.e. Agδ+-like), while nickel is characterized by signs of a deeply oxidized state (Ni3+-like). The interaction of AgNiO2 with C2H4 at room temperature leads to the simultaneous removal of two oxygen species with Eb(O 1s) = 529.0 eV and 530.5 eV considered as nucleophilic and electrophilic oxygen states, respectively. Nucleophilic oxygen was attributed to the lattice oxygen (Ag-O-Ni), while the electrophilic species with epoxidation activity was associated with the weakly bound oxygen stabilized on the surface. According to the TPR-C2H4 data, a large number of weakly bound oxygen species were found on the pristine AgNiO2 surface. The removal of such species at room temperature didn't result in noticeable structural transformation of delafossite. As the temperature of ethylene oxidation over AgNiO2 increased, the appearance of Ag0 particles was first observed below 200 °C followed by the complete destruction of the delafossite structure at higher temperatures.

5.
Gels ; 9(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36826293

RESUMO

In this article, we report the results of research the formation of silicoaluminophosphate gels under changing gel aging conditions and the influence of an aluminum source (boehmite), characterized by different properties. The samples of initial gels were characterized by XRF, X-ray diffraction, MAS NMR 27Al and 31P, and scanning electron microscopy (SEM). Products of crystallization were characterized by XRF, X-ray diffraction, MAS NMR 27Al and 31P, scanning electron microscopy (SEM), N2-physical adsorption, and IR spectroscopy with pyridine adsorption. It has been established that the chemical and phase composition of aging gels and the products of further crystallization is conditioned by the size of the crystals and the porous structure of boehmite. Methods of management the morphology and secondary porous structure of SAPO-11, including the hierarchical porous structure, are proposed based on the use of boehmits characterized by different properties and changing the aging conditions of the initial gels. SAPO-based catalyst with a hierarchical porous structure showed excellent catalytic performance in dimerization of α-methylstyrene with a high degree of conversion and selectivity for linear isomers.

6.
Materials (Basel) ; 15(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36431512

RESUMO

In this work, new photocatalysts based on Cd1-xMnxS sulfide solid solutions were synthesized by varying the fraction of MnS (x = 0.4, 0.6, and 0.8) and the hydrothermal treatment temperature (T = 100, 120, 140, and 160 °C). The active samples were modified with Pt and NiS co-catalysts. Characterization was performed using various methods, including XRD, XPS, HR TEM, and UV-vis spectroscopy. The photocatalytic activity was tested in hydrogen evolution from aqueous solutions of Na2S/Na2SO3 and glucose under visible light (425 nm). When studying the process of hydrogen evolution using an equimolar mixture of Na2S/Na2SO3 as a sacrificial agent, the photocatalysts Cd0.5Mn0.5S/Mn(OH)2 (T = 120 °C) and Cd0.4Mn0.6S (T = 160 °C) demonstrated the highest activity among the non-modified solid solutions. The deposition of NiS co-catalyst led to a significant increase in activity. The best activity in the case of the modified samples was shown by 0.5 wt.% NiS/Cd0.5Mn0.5S (T = 120 °C) at the extraordinary level of 34.2 mmol g-1 h-1 (AQE 14.4%) for the Na2S/Na2SO3 solution and 4.6 mmol g-1 h-1 (AQE 2.9%) for the glucose solution. The nickel-containing samples possessed a high stability in solutions of both sodium sulfide/sulfite and glucose. Thus, nickel sulfide is considered an alternative to depositing precious metals, which is attractive from an economic point of view. It worth noting that the process of photocatalytic hydrogen evolution from sugar solutions by adding samples based on Cd1-xMnxS has not been studied before.

7.
Materials (Basel) ; 15(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36363234

RESUMO

Double oxides with the structure of the Ruddlesden-Popper (R-P) layered perovskite An+1BnO3n+1 attract attention as materials for various electrochemical devices, selective oxygen-permeable ceramic membranes, and catalytic oxidative reactions. In particular, Sr2TiO4 layered perovskite is considered a promising catalyst in the oxidative coupling of methane. Our high-resolution transmission electron microscopy (HRTEM) studies of Sr2TiO4 samples synthesized using various methods have shown that their structure often contains planar defects disturbing the periodicity of layer alternation. This is due to the crystal-chemical features of the R-P layered perovskite-like oxides whose structure is formed by n consecutive layers of perovskite (ABO3)n in alternating with layers of rock-salt type (AO) in various ways along the c crystallographic direction. Planar defects can arise due to a periodicity violation of the layers alternation that also leads to a violation of the synthesized phase stoichiometry. In the present work, a crystallochemical analysis of the possible structure of planar defects is carried out, structures containing defects are modeled, and the effect of such defects on the X-ray diffraction patterns of oxides of the A2BO4 type using Sr2TiO4 is established as an example. For the calculations, we used the method of constructing probabilistic models of one-dimensionally disordered structures. For the first time, the features of diffraction were established, and an approach was demonstrated for determining the concentration of layer alternation defects applicable to layered perovskite-like oxides of the A2BO4 type of any chemical composition. A relation has been established between the concentration of planar defects and the real chemical composition (nonstoichiometry) of the Sr2TiO4 phase. The presence of defects leads to the Ti enrichment of particle volume and, consequently, to the enrichment of the surface with Sr. The latter, in turn, according to the data of a number of authors, can serve as an explanation for the catalytic activity of Sr2TiO4 in the oxidative coupling of methane.

8.
Materials (Basel) ; 15(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35329472

RESUMO

A sol-gel technique was applied to prepare the two-component oxide system Cu-Mg-O, where MgO plays the role of oxide matrix, and CuO is an active chemical looping component. The prepared samples were characterized by scanning electron microscopy, low-temperature nitrogen adsorption, and X-ray diffraction analysis. The reduction behavior of the Cu-Mg-O system was examined in nine consecutive reduction/oxidation cycles. The presence of the MgO matrix was shown to affect the ability of CuO towards reduction and re-oxidation significantly. During the first reduction/oxidation cycle, the main characteristics of the oxide system (particle size, crystallization degree, etc.) undergo noticeable changes. Starting from the third cycle, the system exhibits a stable operation, providing the uptake of similar hydrogen amounts within the same temperature range. Based on the obtained results, the two-component Cu-Mg-O system can be considered as a prospective chemical looping agent.

9.
Phys Chem Chem Phys ; 23(34): 18925-18929, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34612431

RESUMO

The relationship between the adsorption of water on MIL-53 (Al) MOF, the structural phase of MIL-53 (Al), and the quadrupole coupling constant of 27Al framework aluminium atom (QCC) of the MOF AlO4(OH)2 centres (Al-sites) has been investigated by combining solid-state 27Al MAS NMR spectroscopy with XRD analysis and DFT calculations. It is established that 27Al QCC is primarily sensitive to water adsorption to the Al-sites and by a minor extent to the framework contraction/expansion interconversions. We thus conclude that the 27Al MAS NMR method is sensitive enough to differentiate the effects of pore contractions and water adsorption to Al-sites basing on the changes of the QCC value.

10.
Nanomaterials (Basel) ; 11(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535500

RESUMO

A series of solid solutions of cadmium and manganese sulfides, Cd1-xMnxS (x = 0-0.35), and composite photocatalysts, CdS-ß-Mn3O4-MnOOH, were synthesized by precipitation with sodium sulfide from soluble cadmium and manganese salts with further hydrothermal treatment at 120 °C. The obtained photocatalysts were studied by the X-ray diffraction method (XRD), UV-vis diffuse reflectance spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and N2 low temperature adsorption. The photocatalysts were tested in hydrogen production using a Na2S/Na2SO3 aqueous solution under visible light (λ = 450 nm). It was shown for the first time that both kinds of photocatalysts possess high activity in hydrogen evolution under visible light. The solid solution Cd0.65Mn0.35S has an enhanced photocatalytic activity due to its valence and conduction band position tuning, whereas the CdS-ß-Mn3O4-MnOOH (40-60 at% Mn) samples were active due to ternary heterojunction formation. Further, the composite CdS-ß-Mn3O4-MnOOH photocatalyst had much higher stability in comparison to the Cd0.65Mn0.35S solid solution. The highest activity was 600 mmol g-1 h-1, and apparent quantum efficiency of 2.9% (λ = 450 nm) was possessed by the sample of CdS-ß-Mn3O4-MnOOH (40 at% Mn).

11.
RSC Adv ; 11(60): 37966-37980, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-35498100

RESUMO

Ternary composite photocatalysts based on titania and solid solutions of CdS and ZnS were prepared and studied by a set of physicochemical methods including XRD, XPS, HRTEM, UV-vis spectroscopy, and electrochemical tests. Two synthetic techniques of platinization of Cd1-x Zn x S/TiO2 were compared. In the first case, platinum was deposited on the surface of synthesized Cd1-x Zn x S (x = 0.2-0.3)/TiO2 P25; in the second one, Cd1-x Zn x S (x = 0.2-0.3) was deposited on the surface of Pt/TiO2 P25. The photocatalytic properties of the obtained samples were compared in the hydrogen evolution from TEOA aqueous solution under visible light (λ = 425 nm). The Cd1-x Zn x S (10-50 wt%; x = 0.2-0.3)/Pt (1 wt%)/TiO2 photocatalysts demonstrated much higher photocatalytic activity than the Pt (1 wt%)/Cd1-x Zn x S (10-50 wt%; x = 0.2-0.3)/TiO2 ones. It turned out that the arrangement of platinum nanoparticles precisely on the titanium dioxide surface in a composite photocatalyst makes it possible to achieve efficient charge separation according to the type II heterojunctions and, accordingly, a high rate of hydrogen formation. The highest photocatalytic activity was demonstrated by 20% Cd0.8Zn0.2S/1% Pt/TiO2 in the amount of 26 mmol g-1 h-1 (apparent quantum efficiency was 7.7%) that exceeds recently published values for this class of photocatalysts.

12.
ACS Omega ; 5(32): 19928-19937, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32832747

RESUMO

Enhanced activity in low-temperature water-gas shift (LT-WGS) reaction of some ceramometal catalysts compared to conventional Cu-Zn-Al oxide catalyst was demonstrated. Porous ceramometals were synthesized from powdered CuAl alloys prepared by mechanical alloying with the addition of either CuAlexp powders produced by current spark explosion of Cu+Al wires or CuZnAl oxide obtained by coprecipitation. Their structural, microstructural, and textural characteristics were examined by means of X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray spectrometry, NMR, and adsorption methods, and catalytic properties were studied in the LT-WGS reaction. CuAlO/CuAl ceramometals were found to have mostly the egg-shell microstructure with the metallic cores (Al x Cu1-x , Al2Cu, and Al4Cu9) and the oxide shell containing copper oxides and/or mixed oxides of copper and aluminum and, at same time, CuAlO/CuAl ceramometal with incorporated additives was found to create a more complicated microstructure. A large amount of X-ray amorphous oxides of copper and aluminum is typical for all composites. CuAl ceramometal was shown to be more active than the CuZnAl oxide catalyst in spite of a much lower specific surface area. The CuAl+CuZnAl catalyst consisting of prismatic granules showed a higher activity in comparison with CuZnAl oxide consisting of cylindrical granules. The activity of the composite granulated catalyst referred to its unit weight was more than 6-fold higher as compared to the oxide catalyst, while the activity per the surface area was found to be more than an order of magnitude higher due to much higher specific activity of small fraction and additively much lower diffusion limitation of granules.

13.
RSC Adv ; 10(3): 1341-1350, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35494672

RESUMO

Photocatalysts based on zinc hydroxide and a solid solution of CdS and ZnS were prepared via the precipitation method and used for photocatalytic hydrogen production from aqueous solutions of inorganic (Na2S/Na2SO3) and organic (ethanol) sacrificial agents. The photocatalysts were tested in cyclic experiments for hydrogen evolution and studied using X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy, high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) techniques. Different transformations of the ß-Zn(OH)2 co-catalyst were observed in the presence of inorganic and organic sacrificial agents; namely, ZnS was formed in Na2S/Na2SO3 solution, whereas the formation of ε-Zn(OH)2 was detected in solution with ethanol. The composite Zn(OH)2/Cd1-x Zn x S photocatalysts have great potential in various photocatalysis processes (e.g., hydrogen production, CO2 reduction, and the oxidation of organic contaminants) under visible light.

14.
Photochem Photobiol Sci ; 18(4): 871-877, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30387484

RESUMO

Novel photocatalysts for CO2 reduction, which consist of a cadmium and zinc sulfide solid solution (Cd1-xZnxS), were successfully prepared by a simple two-step technique. The photocatalysts were characterized by X-ray diffraction, UV-VIS diffuse reflectance spectroscopy, and low-temperature N2 adsorption techniques and were tested in the gas-phase photocatalytic reduction of CO2 under visible light (λ = 450 nm). All the synthesized Cd1-xZnxS solid solutions were capable of enabling the chemical transformations of CO2 under the conditions considered. Carbon monoxide was the major product during the CO2 reduction over Cd1-xZnxS (x = 0-0.87). Methane and hydrogen were also detected in the gas phase in low amounts. The activity of the prepared samples and the distribution of the reduction products strongly depended on the actual cadmium to zinc ratio. The Cd0.94Zn0.06S photocatalyst showed the highest activity, 2.9 µmol CO per gram per hour, and selectivity, 95%, during CO2 reduction under visible light in the presence of water vapor. The achieved values are very high for the sulfide-based photocatalysts.

15.
Phys Chem Chem Phys ; 9(40): 5476-89, 2007 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-17925974

RESUMO

PtRu (1:1) catalysts supported on low surface area carbon of the Sibunit family (S(BET) = 72 m(2) g(-1)) with a metal percentage ranging from 5 to 60% are prepared and tested in a CO monolayer and for methanol oxidation in H(2)SO(4) electrolyte. At low metal percentage small (<2 nm) alloy nanoparticles, uniformly distributed on the carbon surface, are formed. As the amount of metal per unit surface area of carbon increases, particles start coalescing and form first quasi two-dimensional, and then three-dimensional metal nanostructures. This results in a strong enhancement of specific catalytic activity in methanol oxidation and a decrease of the overpotential for CO monolayer oxidation. It is suggested that intergrain boundaries connecting crystalline domains in nanostructured PtRu catalysts produced at high metal-on-carbon loadings provide active sites for electrocatalytic processes.

16.
J Phys Chem B ; 110(13): 6881-90, 2006 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-16570998

RESUMO

This work is part of a continued research aimed at the understanding of the promoting role of Se in the enhancement of the electrocatalytic activity of Ru in the oxygen reduction reaction. The objective of this paper is to systematically investigate the transformation of Ru nanoparticles upon their modification with the increasing amounts of Se. The Se-modified Ru/C samples with Se:Ru ratio from 0 to 1 were prepared by reacting carbon-supported Ru nanoparticles with SeO2 followed by reductive annealing and characterized using high-resolution transmission electron microscopy, energy-dispersive X-ray, X-ray diffraction analysis, X-ray photoelectron spectroscopy, and extended X-ray absorption fine structure. The results suggest that Se strongly interacts with Ru, resulting in the chemical bond between Ru and Se and formation of Ru selenide clusters whose core at low Se content can be described as Ru2Se2O0.5. At Se:Ru = 1, high-resolution electron microscopy shows evidence of formation of core-shell particles, comprising a hexagonally packed Ru core and a Ru selenide shell with lamellar morphology. Modification of Ru nanoparticles with Se enhances their electrocatalytic activity in the oxygen reduction reaction, which is explained by the role of Se in inhibiting surface oxidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA