Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Eur J Cell Biol ; 102(3): 151340, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37423036

RESUMO

The biological and clinical significance of aberrant clonal expansions in aged tissues is being intensely discussed. Evidence is accruing that these clones often result from the normal dynamics of cell turnover in our tissues. The aged tissue microenvironment is prone to favour the emergence of specific clones with higher fitness partly because of an overall decline in cell intrinsic regenerative potential of surrounding counterparts. Thus, expanding clones in aged tissues need not to be mechanistically associated with the development of cancer, albeit this is a possibility. We suggest that growth pattern is a critical phenotypic attribute that impacts on the fate of such clonal proliferations. The acquisition of a better proliferative fitness, coupled with a defect in tissue pattern formation, could represent a dangerous mix setting the stage for their evolution towards neoplasia.


Assuntos
Envelhecimento , Neoplasias , Humanos , Idoso , Neoplasias/genética , Células Clonais , Microambiente Tumoral
2.
Front Pharmacol ; 13: 890693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35652047

RESUMO

Flavonoids may modulate the bone formation process. Among flavonoids, fisetin is known to counteract tumor growth, osteoarthritis, and rheumatoid arthritis. In addition, fisetin prevents inflammation-induced bone loss. In order to evaluate its favorable use in osteogenesis, we assayed fisetin supplementation in both in vitro and in vivo models and gathered information on nanoparticle-mediated delivery of fisetin in vitro and in a microfluidic system. Real-time RT-PCR, Western blotting, and nanoparticle synthesis were performed to evaluate the effects of fisetin in vitro, in the zebrafish model, and in ex vivo samples. Our results demonstrated that fisetin at 2.5 µM concentration promotes bone formation in vitro and mineralization in the zebrafish model. In addition, we found that fisetin stimulates osteoblast maturation in cell cultures obtained from cleidocranial dysplasia patients. Remarkably, PLGA nanoparticles increased fisetin stability and, consequently, its stimulating effects on RUNX2 and its downstream gene SP7 expression. Therefore, our findings demonstrated the positive effects of fisetin on osteogenesis and suggest that patients affected by skeletal diseases, both of genetic and metabolic origins, may actually benefit from fisetin supplementation.

3.
Stem Cell Rev Rep ; 18(5): 1865-1874, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35316486

RESUMO

Stem cells functions are regulated by different factors and non-conding RNAs, such as microRNA. MiRNAsplay an important role in modulating the expression of genes involved in the commitment and differentiation of progenitor cells. MiRNAs are post transcriptional regulators which may be modulated by physical exercise. MiRNAs, by regulating different signaling pathways, play an important role in myogenesis as well as in muscle activity. MiRNAs quantification may be considered for evaluating physical performance or muscle recovery. With the aim to identify specific miRNAs potentially involved in myogenesis and modulated by physical activity, we investigated miRNAs expression following physical performance in Peripheral Blood Mononuclear Cells (PBMCs) and in sera of half marathon (HM) runnners. The effect of runners sera on Myogenesis in in vitro cellular models was also explored. Therefore, we performed Microarray Analysis and Real Time PCR assays, as well as in vitro cell cultures analysis to investigate myogenic differentiation. Our data demonstrated gender-specific expression patterns of PBMC miRNAs before physical performance. In particular, miR223-3p, miR26b-5p, miR150-5p and miR15-5p expression was higher, while miR7a-5p and miR7i-5p expression was lower in females compared to males. After HM, miR152-3p, miR143-3p, miR27a-3p levels increased while miR30b-3p decreased in both females and males: circulating miRNAs mirrored these modulations. Furthermore, we also observed that the addition of post-HM participants sera to cell cultures exerted a positive effect in stimulating myogenesis. In conclusion, our data suggest that physical activity induces the modulation of myogenesis-associated miRNAs in bothfemales and males, despite the gender-associated different expression of certain miRNAs, Noteworthy, these findings might be useful for evaluating potential targets for microRNA based-therapies in diseases affecting the myogenic stem cells population.


Assuntos
MicroRNAs , Proteína MyoD/metabolismo , Exercício Físico , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Mioblastos
4.
Cells ; 10(9)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34571918

RESUMO

Cancer often arises in the context of an altered tissue landscape. We argue that a major contribution of aging towards increasing the risk of neoplastic disease is conveyed through effects on the microenvironment. It is now firmly established that aged tissues are prone to develop clones of altered cells, most of which are compatible with a normal histological appearance. Such increased clonogenic potential results in part from a generalized decrease in proliferative fitness, favoring the emergence of more competitive variant clones. However, specific cellular genotypes can emerge with reduced cooperative and integrative capacity, leading to disruption of tissue architecture and paving the way towards progression to overt neoplastic phenotypes.


Assuntos
Envelhecimento , Transformação Celular Neoplásica/patologia , Neoplasias/patologia , Idoso , Humanos , Neoplasias/etiologia
5.
Neoplasia ; 23(10): 1029-1036, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34500336

RESUMO

Complex multicellular organisms require quantitative and qualitative assessments on each of their constitutive cell types to ensure coordinated and cooperative behavior towards overall functional proficiency. Cell competition represents one of the operating arms of such quality control mechanisms and relies on fitness comparison among individual cells. However, what is exactly included in the fitness equation for each cell type is still uncertain. Evidence will be discussed to suggest that the ability of the cell to integrate and collaborate within the organismal community represents an integral part of the best fitness phenotype. Thus, under normal conditions, cell competition will select against the emergence of altered cells with disruptive behavior towards tissue integrity and/or tissue pattern formation. On the other hand, the winner phenotype prevailing as a result of cell competition does not entail, by itself, any degree of growth autonomy. While cell competition per se should not be considered as a biological driving force towards the emergence of the neoplastic phenotype, it is possible that the molecular machinery involved in the winner/loser interaction could be hijacked by evolving cancer cell populations.

6.
Sci Rep ; 11(1): 14922, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290274

RESUMO

The GNA15 gene is ectopically expressed in human pancreatic ductal adenocarcinoma cancer cells. The encoded Gα15 protein can promiscuously redirect GPCR signaling toward pathways with oncogenic potential. We sought to describe the distribution of GNA15 in adenocarcinoma from human pancreatic specimens and to analyze the mechanism driving abnormal expression and the consequences on signaling and clinical follow-up. We detected GNA15 expression in pre-neoplastic pancreatic lesions and throughout progression. The analysis of biological data sets, primary and xenografted human tumor samples, and clinical follow-up shows that elevated expression is associated with poor prognosis for GNA15, but not any other GNA gene. Demethylation of the 5' GNA15 promoter region was associated with ectopic expression of Gα15 in pancreatic neoplastic cells, but not in adjacent dysplastic or non-transformed tissue. Down-modulation of Gα15 by shRNA or CRISPR/Cas9 affected oncogenic signaling, and reduced adenocarcimoma cell motility and invasiveness. We conclude that de novo expression of wild-type GNA15 characterizes transformed pancreatic cells. The methylation pattern of GNA15 changes in preneoplastic lesions coincident with the release a transcriptional blockade that allows ectopic expression to persist throughout PDAC progression. Elevated GNA15 mRNA correlates with poor prognosis. In addition, ectopic Gα15 signaling provides an unprecedented mechanism in the early steps of pancreas carcinogenesis distinct from classical G protein oncogenic mutations described previously in GNAS and GNAQ/GNA11.


Assuntos
Carcinoma Ductal Pancreático/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pancreáticas/genética , Sistemas CRISPR-Cas , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica/genética , Humanos , Metilação , Invasividade Neoplásica/genética , Neoplasias Pancreáticas/patologia , Prognóstico , Regiões Promotoras Genéticas/genética , RNA Mensageiro , RNA Interferente Pequeno , Transdução de Sinais
7.
Stem Cell Res Ther ; 12(1): 326, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090529

RESUMO

BACKGROUND: Methylsulfonylmethane (MSM) is a nutraceutical compound which has been indicated to counteract osteoarthritis, a cartilage degenerative disorder. In addition, MSM has also been shown to increase osteoblast differentiation. So far, few studies have investigated MSM role in the differentiation of mesenchymal stem cells (MSCs), and no study has been performed to evaluate its overall effects on both osteogenic and chondrogenic differentiation. These two mutually regulated processes share the same progenitor cells. METHODS: Therefore, with the aim to evaluate the effects of MSM on chondrogenesis and osteogenesis, we analyzed the expression of SOX9, RUNX2, and SP7 transcription factors in vitro (mesenchymal stem cells and chondrocytes cell lines) and in vivo (zebrafish model). Real-time PCR as well Western blotting, immunofluorescence, and specific in vitro and in vivo staining have been performed. Student's paired t test was used to compare the variation between the groups. RESULTS: Our data demonstrated that MSM modulates the expression of differentiation-related genes both in vitro and in vivo. The increased SOX9 expression suggests that MSM promotes chondrogenesis in treated samples. In addition, RUNX2 expression was not particularly affected by MSM while SP7 expression increased in all MSM samples/model analyzed. As SP7 is required for the final commitment of progenitors to preosteoblasts, our data suggest a role of MSM in promoting preosteoblast formation. In addition, we observed a reduced expression of the osteoclast-surface receptor RANK in larvae and in scales as well as a reduced pERK/ERK ratio in fin and scale of MSM treated zebrafish. CONCLUSIONS: In conclusion, our study provides new insights into MSM mode of action and suggests that MSM is a useful tool to counteract skeletal degenerative diseases by targeting MSC commitment and differentiation.


Assuntos
Condrogênese , Peixe-Zebra , Animais , Diferenciação Celular , Células Cultivadas , Condrócitos , Dimetil Sulfóxido/farmacologia , Humanos , Osteoblastos , Osteogênese , Sulfonas
8.
Antioxidants (Basel) ; 10(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070133

RESUMO

Sickle cell disease (SCD) is a genetic disorder of hemoglobin, leading to chronic hemolytic anemia and multiple organ damage. Among chronic organ complications, sickle cell bone disease (SBD) has a very high prevalence, resulting in long-term disability, chronic pain and fractures. Here, we evaluated the effects of ω-3 (fish oil-based, FD)-enriched diet vs. ω-6 (soybean oil-based, SD)- supplementation on murine SBD. We exposed SCD mice to recurrent hypoxia/reoxygenation (rec H/R), a consolidated model for SBD. In rec H/R SS mice, FD improves osteoblastogenesis/osteogenic activity by downregulating osteoclast activity via miR205 down-modulation and reduces both systemic and local inflammation. We also evaluated adipogenesis in both AA and SS mice fed with either SD or FD and exposed to rec H/R. FD reduced and reprogramed adipogenesis from white to brown adipocyte tissue (BAT) in bone compartments. This was supported by increased expression of uncoupling protein 1(UCP1), a BAT marker, and up-regulation of miR455, which promotes browning of white adipose tissue. Our findings provide new insights on the mechanism of action of ω-3 fatty acid supplementation on the pathogenesis of SBD and strengthen the rationale for ω-3 fatty acid dietary supplementation in SCD as a complementary therapeutic intervention.

9.
Sci Rep ; 10(1): 11572, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665600

RESUMO

The topical application of lactic acid bacteria (LAB) is recognized as a useful approach to improve skin health. This work aims to characterize by a multidisciplinary approach, the wound healing, anti-inflammatory, anti-pathogens and proteomic effects of six LAB lysates, belonging to the genus Lactobacillus. Our results demonstrated that the lysates of tested LAB stimulated the proliferation of keratinocytes, and that L. plantarum SGL 07 and L. salivarius SGL 19 accelerated the re-epithelization by inducing keratinocyte migration. The bacterial lysates also reduced the secretion of specific pro-inflammatory mediators from keratinocytes. Furthermore, viable L. salivarius SGL 19 and L. fermentum SGL 10 had anti-pathogenic effects against S. aureus and S. pyogenes, while L. brevis SGL 12 and L. paracasei SGL 04 inhibited S. aureus and S. pyogenes, respectively. The tested lactobacilli lysates also induced specific proteome modulation of the exposed keratinocytes, involving dysregulation of proteins (such as interleukin enhancer-binding factor 2 and ATP-dependent RNA helicase) and pathways (such as cytokine, NF-kB, Hedgehog, and RUNX signaling) associated with their specific wound healing and anti-inflammatory effects. This study indicates the different potential of selected lactobacilli, suggesting that they may be successfully used in the future together with conventional therapies to bring relief from skin disorders.


Assuntos
Queratinócitos/microbiologia , Lactobacillales/metabolismo , Proteômica , Cicatrização , Anti-Inflamatórios/metabolismo , Humanos , Queratinócitos/metabolismo , Lactobacillales/genética , Lactobacillus/genética , Lactobacillus/crescimento & desenvolvimento , NF-kappa B/genética , Transdução de Sinais/genética , Pele/metabolismo , Pele/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade
10.
Cells ; 9(3)2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204402

RESUMO

Ectopic expression of RUNX2 has been reported in several tumors. In melanoma cells, the RUNT domain of RUNX2 increases cell proliferation and migration. Due to the strong link between RUNX2 and skeletal development, we hypothesized that the RUNT domain may be involved in the modulation of mechanisms associated with melanoma bone metastasis. Therefore, we evaluated the expression of metastatic targets in wild type (WT) and RUNT KO melanoma cells by array and real-time PCR analyses. Western blot, ELISA, immunofluorescence, migration and invasion ability assays were also performed. Our findings showed that the expression levels of bone sialoprotein (BSP) and osteopontin (SPP1) genes, which are involved in malignancy-induced hypercalcemia, were reduced in RUNT KO cells. In addition, released PTHrP levels were lower in RUNT KO cells than in WT cells. The RUNT domain also contributes to increased osteotropism and bone invasion in melanoma cells. Importantly, we found that the ERK/p-ERK and AKT/p-AKT pathways are involved in RUNT-promoted bone metastases. On the basis of our findings, we concluded that the RUNX2 RUNT domain is involved in the mechanisms promoting bone metastasis of melanoma cells via complex interactions between multiple players involved in bone remodeling.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Subunidade alfa 1 de Fator de Ligação ao Core/química , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanoma/patologia , Linhagem Celular Tumoral , Movimento Celular , Humanos , Sistema de Sinalização das MAP Quinases , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Domínios Proteicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Relação Estrutura-Atividade
12.
Cells ; 8(11)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683926

RESUMO

Osteoarthritis (OA) is predominantly characterized by the progressive degradation of articular cartilage, the connective tissue produced by chondrocytes, due to an imbalance between anabolic and catabolic processes. In addition, physical activity (PA) is recognized as an important tool for counteracting OA. To evaluate PA effects on the chondrocyte lineage, we analyzed the expression of SOX9, COL2A1, and COMP in circulating progenitor cells following a half marathon (HM) performance. Therefore, we studied in-depth the involvement of metabolites affecting chondrocyte lineage, and we compared the metabolomic profile associated with PA by analyzing runners' sera before and after HM performance. Interestingly, this study highlighted that metabolites involved in vitamin B6 salvage, such as pyridoxal 5'-phosphate and pyridoxamine 5'-phosphate, were highly modulated. To evaluate the effects of vitamin B6 in cartilage cells, we treated differentiated mesenchymal stem cells and the SW1353 chondrosarcoma cell line with vitamin B6 in the presence of IL1ß, the inflammatory cytokine involved in OA. Our study describes, for the first time, the modulation of the vitamin B6 salvage pathway following PA and suggests a protective role of PA in OA through modulation of this pathway.


Assuntos
Cartilagem/metabolismo , Condrócitos/metabolismo , Exercício Físico/fisiologia , Adulto , Atletas , Cartilagem/fisiologia , Proteína de Matriz Oligomérica de Cartilagem/análise , Proteína de Matriz Oligomérica de Cartilagem/sangue , Cartilagem Articular/metabolismo , Cartilagem Articular/fisiologia , Linhagem Celular , Células Cultivadas , Condrócitos/fisiologia , Colágeno Tipo II/análise , Colágeno Tipo II/sangue , Proteínas de Drosophila/análise , Proteínas de Drosophila/sangue , Feminino , Humanos , Interleucina-1beta , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Metabolômica/métodos , Pessoa de Meia-Idade , Osteoartrite/metabolismo , Osteoartrite/fisiopatologia , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/fisiopatologia , Fatores de Transcrição SOX9/análise , Fatores de Transcrição SOX9/sangue , Vitamina B 6/metabolismo
13.
Cells ; 8(7)2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31330975

RESUMO

Physical exercise is known to promote beneficial effects on overall health, counteracting risks related to degenerative diseases. MicroRNAs (miRNAs), short non-coding RNAs affecting the expression of a cell's transcriptome, can be modulated by different stimuli. Yet, the molecular effects on osteogenic differentiation triggered by miRNAs upon physical exercise are not completely understood. In this study, we recruited 20 male amateur runners participating in a half marathon. Runners' sera, collected before (PRE RUN) and after (POST RUN) the run, were added to cultured human mesenchymal stromal cells. We then investigated their effects on the modulation of selected miRNAs and the consequential effects on osteogenic differentiation. Our results showed an increased expression of miRNAs promoting osteogenic differentiation (miR-21-5p, miR-129-5p, and miR-378-5p) and a reduced expression of miRNAs involved in the adipogenic differentiation of progenitor cells (miR-188-5p). In addition, we observed the downregulation of PTEN and SMAD7 expression along with increased AKT/pAKT and SMAD4 protein levels in MSCs treated with POST RUN sera. The consequent upregulation of RUNX2 expression was also proven, highlighting the molecular mechanisms by which miR-21-5p promotes osteogenic differentiation. In conclusion, our work proposes novel data, which demonstrate how miRNAs may regulate the osteogenic commitment of progenitor cells in response to physical exercise.


Assuntos
Exercício Físico , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteogênese/fisiologia , Adipogenia/fisiologia , Adulto , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade
14.
Sci Rep ; 9(1): 8052, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142788

RESUMO

Runx2 is a transcription factor involved in melanoma cell migration and proliferation. Here, we extended the analysis of Runt domain of Runx2 in melanoma cells to deepen understanding of the underlying mechanisms. By the CRISPR/Cas9 system we generated the Runt KO melanoma cells 3G8. Interestingly, the proteome analysis showed a specific protein signature of 3G8 cells related to apoptosis and migration, and pointed out the involvement of Runt domain in the neoangiogenesis process. Among the proteins implicated in angiogenesis we identified fatty acid synthase, chloride intracellular channel protein-4, heat shock protein beta-1, Rho guanine nucleotide exchange factor 1, D-3-phosphoglycerate dehydrogenase, myosin-1c and caveolin-1. Upon querying the TCGA provisional database for melanoma, the genes related to these proteins were found altered in 51.36% of total patients. In addition, VEGF gene expression was reduced in 3G8 as compared to A375 cells; and HUVEC co-cultured with 3G8 cells expressed lower levels of CD105 and CD31 neoangiogenetic markers. Furthermore, the tube formation assay revealed down-regulation of capillary-like structures in HUVEC co-cultured with 3G8 in comparison to those with A375 cells. These findings provide new insight into Runx2 molecular details which can be crucial to possibly propose it as an oncotarget of melanoma.


Assuntos
Biomarcadores Tumorais/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Neovascularização Patológica/genética , Neoplasias Cutâneas/genética , Apoptose/genética , Biomarcadores Tumorais/análise , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Técnicas de Cocultura , Biologia Computacional , Conjuntos de Dados como Assunto , Endoglina/análise , Endoglina/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Melanócitos , Melanoma/irrigação sanguínea , Melanoma/patologia , Neovascularização Patológica/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/análise , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Cultura Primária de Células , Domínios Proteicos/genética , Proteômica , Neoplasias Cutâneas/irrigação sanguínea , Neoplasias Cutâneas/patologia , Fator A de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/genética
15.
J Clin Med ; 8(3)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857168

RESUMO

Direct oral anti-coagulants (DOACs) are employed in clinical practice for the prevention and treatment of recurrent venous thromboembolism and for the prevention of stroke in non-valvular atrial fibrillation. DOACs directly and reversibly inhibit activated factor X or thrombin and can interfere with other pathophysiological processes such as inflammation, lipid metabolism, and bone turnover. We aimed to evaluate the possible effects of DOACs on osteogenesis and angiogenesis. We treated 34 patients affected by cardiovascular disorders with DOACs; biochemical and molecular analyses were performed before and after three months of treatment. Circulating progenitors (CPs; CD34-, CD45-, CD14-, CD73⁺, CD105⁺), which share typical bone marrow stem cell (MSCs) features, were harvested from peripheral blood of the study subjects to monitor the expression of osteogenesis-related genes RUNX2 and SPARC. Human umbilical vein endothelial cells (HUVECs) were used to probe angiogenesis-related VEGF, CD31, and CD105 gene expression. We performed co-culture experiments using a commercial human mesenchymal stem cells line (hMSCs) obtained from bone marrow and HUVECs. Clinical parameters related to bone metabolism, coagulation, renal and liver function, and the lipid profile were evaluated. Values of the C-terminal telopeptide type I collagen (CTX) increased after the treatment. We found a significant increase in osteogenesis marker gene expression in CPs after three months of anticoagulant therapy. An increase in the RUNX2 expression determinant alone was detected instead in hMSCs co-cultured with HUVECs in the presence of treated patients' sera. The VEGF, CD31, and CD105 marker genes appeared to be significantly upregulated in HUVECs co-cultured with hMSCs in the presence of treated patients' sera. Under these conditions, new vessel formation increased as well. Our results highlight an unexpected influence of DOAC therapy on osteogenic commitment and vascular endothelial function promotion.

16.
Cells ; 7(11)2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463392

RESUMO

The mortality rate for malignant melanoma (MM) is very high, since it is highly invasive and resistant to chemotherapeutic treatments. The modulation of some transcription factors affects cellular processes in MM. In particular, a higher expression of the osteogenic master gene RUNX2 has been reported in melanoma cells, compared to normal melanocytes. By analyzing public databases for recurrent RUNX2 genetic and epigenetic modifications in melanoma, we found that the most common RUNX2 genetic alteration that exists in transcription upregulation is, followed by genomic amplification, nucleotide substitution and multiple changes. Additionally, altered RUNX2 is involved in unchecked pathways promoting tumor progression, Epithelial Mesenchymal Transition (EMT), and metastasis. In order to investigate further the role of RUNX2 in melanoma development and to identify a therapeutic target, we applied the CRISPR/Cas9 technique to explore the role of the RUNT domain of RUNX2 in a melanoma cell line. RUNT-deleted cells showed reduced proliferation, increased apoptosis, and reduced EMT features, suggesting the involvement of the RUNT domain in different pathways. In addition, del-RUNT cells showed a downregulation of genes involved in migration ability. In an in vivo zebrafish model, we observed that wild-type melanoma cells migrated in 81% of transplanted fishes, while del-RUNT cells migrated in 58%. All these findings strongly suggest the involvement of the RUNT domain in melanoma metastasis and cell migration and indicate RUNX2 as a prospective target in MM therapy.

17.
Oncotarget ; 9(14): 11489-11502, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29545914

RESUMO

Melanoma is an aggressive skin cancer; an early detection of the primary tumor may improve its prognosis. Despite many genes have been shown to be involved in melanoma, the full framework of melanoma transformation has not been completely explored. The characterization of pathways involved in tumor restraint in in vitro models may help to identify oncotarget genes. We therefore aimed to probe novel oncotargets through an integrated approach involving proteomic, gene expression and bioinformatic analysis We investigated molecular modulations in melanoma cells treated with ascorbic acid, which is known to inhibit cancer growth at high concentrations. For this purpose a proteomic approach was applied. A deeper insight into ascorbic acid anticancer activity was achieved; the discovery of deregulated processes suggested further biomarkers. In addition, we evaluated the expression of identified genes as well as the migration ability in several melanoma cell lines. Data obtained by a multidisciplinary approach demonstrated the involvement of Enolase 1 (ENO1), Parkinsonism-associated deglycase (PARK7), Prostaglansin E synthase 3 (PTGES3), Nucleophosmin (NPM1), Stathmin 1 (STMN1) genes in cell transformation and identified Single stranded DNA binding protein 1 (SSBP1) as a possible onco-suppressor in melanoma cancer.

18.
Endocr Relat Cancer ; 25(3): 269-277, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29295822

RESUMO

Acromegalic patients, characterized by excessive secretion of GH and IGF-1, show a high fracture risk but bone mineral density is a poor predictor for bone fractures in these patients. The effects of an excess of GH/IGF1 on skeleton as well as on osteogenic progenitors, i.e. mesenchymal stem cells, have not been investigated in these patients. We aimed to elucidate the skeletal conditions of acromegalic patients by means of bone microarchitecture analysis and evaluation of MSCs osteogenic commitment. In particular, we performed histomorphometric analyses, and we quantified the expression levels of the osteogenic transcription factor RUNX2 in circulating MSCs. Our results showed an abnormal microarchitecture and demonstrated that bone impairment in acromegalic patients is associated with the upregulation of RUNX2 expression. Furthermore, osteoblastic activity was significantly reduced in patients under pharmacological treatment, compared to untreated patients. In conclusion, this study demonstrates the key role of RUNX2 gene overexpression in causing bone impairment in acromegalic patients. It also suggests a therapeutic approach for the improvement of bone quality, focused on the osteoblastic lineage rather than the inhibition of osteoclastic activity.


Assuntos
Acromegalia/genética , Osso e Ossos/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Acromegalia/metabolismo , Adulto , Idoso , Densidade Óssea , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Regulação para Cima , Adulto Jovem
19.
J Proteomics ; 170: 80-87, 2018 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28887210

RESUMO

Physical activity improves overall health and counteracts metabolic pathologies. Adipose tissue and bone are important key targets of exercise; the prevalence of diseases associated with suboptimal physical activity levels has increased in recent times as a result of lifestyle changes. Mesenchymal stem cells (MSCs) differentiation in either osteogenic or adipogenic lineage is regulated by many factors. Particularly, the expression of master genes such as RUNX2 and PPARγ2 is essential for MSC commitment to osteogenic or adipogenic differentiation, respectively. Besides various positive effects on health, some authors have reported stressful outcomes as a consequence of endurance in physical activity. We looked for further clues about MSCs differentiation and serum proteins modulation studying the effects of half marathon in runners by means of gene expression analyses and a proteomic approach. Our results demonstrated an increase in osteogenic commitment and a reduction in adipogenic commitment of MSCs. In addition, for the first time we have analyzed the proteomic profile changes in runners after half-marathon activity in order to survey the related systemic adjustments. The shotgun proteomic approach, performed through the immuno-depletion of the 14 most abundant serum proteins, allowed the identification of 23 modulated proteins after the half marathon. Interestingly, proteomic data showed the activation of both inflammatory response and detoxification process. Moreover, the involvement of pathways associated to immune response, lipid transport and coagulation, was elicited. Notably, positive and negative effects may be strictly linked. Data are available via ProteomeXchange with identifier PXD006704. SIGNIFICANCE: We describe gene expression and proteomic studies aiming to an in-depth understanding of half-marathon effects on bone and adipogenic differentiation as well as biological phenomena involved in sport activity. We believe that this novel approach suggests the physical effects on overall health and show the different pathways involved during half marathon. Contents of the paper have not been published or submitted for publication elsewhere. The authors declare no conflict of interest.


Assuntos
Adipogenia/fisiologia , Proteínas Sanguíneas/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/fisiologia , Corrida/fisiologia , Adulto , Metabolismo Energético/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica , Yin-Yang
20.
Int J Mol Sci ; 18(12)2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29236045

RESUMO

Osteoarthritis (OA), the most prevalent musculoskeletal pathology, is mainly characterized by the progressive degradation of articular cartilage due to an imbalance between anabolic and catabolic processes. Consequently, OA has been associated with defects in the chondrocitic differentiation of progenitor stem cells (PSCs). In addition, SOX9 is the transcription factor responsible for PSCs chondrogenic commitment. To evaluate the effects of the non-amino bisphosphonate clodronate in OA patients we investigated SOX9 gene expression in circulating progenitor cells (CPCs) and in an in vitro OA model. We evaluated pain intensity, mental and physical performance in OA patients, as well as serum biomarkers related to bone metabolism. In addition, in order to improve therapeutic strategies, we assayed nanoparticle-embedded clodronate (NPs-clo) in an in vitro model of chondrogenic differentiation. Our data showed upregulation of SOX9 gene expression upon treatment, suggesting an increase in chondrocytic commitment. Clodronate also reduced osteoarticular pain and improved mental and physical performance in patients. Furthermore, NPs-clo stimulated SOX9 expression more efficaciously than clodronate alone. Clodronate may therefore be considered a good therapeutic tool against OA; its formulation in nanoparticles may represent a promising challenge to counteract cartilage degeneration.


Assuntos
Ácido Clodrônico/uso terapêutico , Osteoartrite/tratamento farmacológico , Idoso , Biomarcadores/sangue , Diferenciação Celular , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese , Ácido Clodrônico/química , Ácido Clodrônico/farmacologia , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Citocinas/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Nanopartículas/química , Osteoartrite/patologia , Dor/patologia , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Índice de Gravidade de Doença , Células-Tronco/citologia , Células-Tronco/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA