Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Biomed Mater ; 19(6)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39255825

RESUMO

Bioengineered vascular grafts (VGs) have emerged as a promising alternative to the treatment of damaged or occlusive vessels. It is thought that polyurethane (PU)-based scaffolds possess suitable hemocompatibility and biomechanics comparable to those of normal blood vessels. In this study, we investigated the properties of electrospun scaffolds comprising various blends of biostable polycarbonate-based PU (Carbothane™ 3575A) and gelatin. Scaffolds were characterized by scanning electron microscopy, infra-red spectroscopy, small-angle x-ray scattering, stress-loading tests, and interactions with primary human cells and blood. Data fromin vitroexperiments demonstrated that a scaffold produced from a blend of 5% Carbothane™ 3575A and 10% gelatin has proven to be a suitable material for fabricating a small-diameter VG. A comparativein vivostudy of such VGs and expanded polytetrafluoroethylene (ePTFE) grafts implanted in the abdominal aorta of Wistar rats was performed. The data of intravital study and histological examination indicated that Carbothane-based electrospun grafts outclass ePTFE grafts and represent a promising device for preclinical studies to satisfy vascular surgery needs.


Assuntos
Prótese Vascular , Teste de Materiais , Poliuretanos , Ratos Wistar , Alicerces Teciduais , Animais , Ratos , Poliuretanos/química , Humanos , Alicerces Teciduais/química , Aorta Abdominal/cirurgia , Materiais Biocompatíveis/química , Politetrafluoretileno/química , Gelatina/química , Masculino , Cimento de Policarboxilato/química , Microscopia Eletrônica de Varredura , Engenharia Tecidual/métodos
2.
J Funct Biomater ; 14(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36826869

RESUMO

Fibrous polyurethane-based scaffolds have proven to be promising materials for the tissue engineering of implanted medical devices. Sterilization of such materials and medical devices is an absolutely essential step toward their medical application. In the presented work, we studied the effects of two sterilization methods (ethylene oxide treatment and electron beam irradiation) on the fibrous scaffolds produced from a polyurethane-gelatin blend. Scaffold structure and properties were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM), infrared spectroscopy (FTIR), a stress-loading test, and a cell viability test with human fibroblasts. Treatment of fibrous polyurethane-based materials with ethylene oxide caused significant changes in their structure (formation of glued-like structures, increase in fiber diameter, and decrease in pore size) and mechanical properties (20% growth of the tensile strength, 30% decline of the maximal elongation). All sterilization procedures did not induce any cytotoxic effects or impede the biocompatibility of scaffolds. The obtained data determined electron beam irradiation to be a recommended sterilization method for electrospun medical devices made from polyurethane-gelatin blends.

4.
Polymers (Basel) ; 14(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35566866

RESUMO

Electrospinning is a popular method used to fabricate small-diameter vascular grafts. However, the importance of structural characteristics of the scaffold determining interaction with endothelial cells and their precursors and blood cells is still not exhaustively clear. This review discusses current research on the significance and impact of scaffold architecture (fiber characteristics, porosity, and surface roughness of material) on interactions between cells and blood with the material. In addition, data about the effects of scaffold topography on cellular behaviour (adhesion, proliferation, and migration) are necessary to improve the rational design of electrospun vascular grafts with a long-term perspective.

5.
Polymers (Basel) ; 14(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35160518

RESUMO

Novel hybrid magnetoactive composite scaffolds based on poly(3-hydroxybutyrate) (PHB), gelatin, and magnetite (Fe3O4) were fabricated by electrospinning. The morphology, structure, phase composition, and magnetic properties of composite scaffolds were studied. Fabrication procedures of PHB/gelatin and PHB/gelatin/Fe3O4 scaffolds resulted in the formation of both core-shell and ribbon-shaped structure of the fibers. In case of hybrid PHB/gelatin/Fe3O4 scaffolds submicron-sized Fe3O4 particles were observed in the surface layers of the fibers. The X-ray photoelectron spectroscopy results allowed the presence of gelatin on the fiber surface (N/C ratio-0.11) to be revealed. Incubation of the composite scaffolds in saline for 3 h decreased the amount of gelatin on the surface by more than ~75%. The differential scanning calorimetry results obtained for pure PHB scaffolds revealed a characteristic melting peak at 177.5 °C. The presence of gelatin in PHB/gelatin and PHB/gelatin/Fe3O4 scaffolds resulted in the decrease in melting temperature to 168-169 °C in comparison with pure PHB scaffolds due to the core-shell structure of the fibers. Hybrid scaffolds also demonstrated a decrease in crystallinity from 52.3% (PHB) to 16.9% (PHB/gelatin) and 9.2% (PHB/gelatin/Fe3O4). All the prepared scaffolds were non-toxic and saturation magnetization of the composite scaffolds with magnetite was 3.27 ± 0.22 emu/g, which makes them prospective candidates for usage in biomedical applications.

6.
Polymers (Basel) ; 12(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759856

RESUMO

A stenting procedure aimed at blood flow restoration in stenosed arteries significantly improves the efficiency of vascular surgery. However, the current challenge is to prevent neointimal growth, which reduces the vessel lumen, in the stented segments in the long run. We tested in vivo drug-eluting coating applied by electrospinning to metal vascular stents to inhibit the overgrowth of neointimal cells via both the drug release and mechanical support of the vascular wall. The blend of polycaprolactone with human serum albumin and paclitaxel was used for stent coating by electrospinning. The drug-eluting stents (DESs) were placed using a balloon catheter to the rabbit common iliac artery for 1, 3, and 6 months. The blood flow rate was ultrasonically determined in vivo. After explantation, the stented arterial segment was visually and histologically examined. Any undesirable biological responses (rejection or hemodynamically significant stenosis) were unobservable in the experimental groups. DESs were less traumatic and induced weaker neointimal growth; over six months, the blood flow increased by 37% versus bare-metal stents, where it increased by at least double the rate. Thus, electrospun-coated DESs demonstrate considerable advantages over the bare-metal variants.

7.
Materials (Basel) ; 13(12)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545664

RESUMO

Although a number of drug-eluting coatings for vascular stents (VSs) have been developed and are in commercial use, more efficient stent coatings and drug delivery systems are needed. Sirolimus (SRL) is a clinically important drug with antiproliferative and immunosuppressive activities that is widely used for coating stents. Here, we characterized SRL-enriched matrices, intended for coating vascular stents, that were produced by electrospinning (ES) on a drum collector from a solution of polycaprolactone (PCL) and human serum albumin (HSA), 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), dimethyl sulfoxide (DMSO), and SRL. The release of tritium-labeled SRL (3H-SRL) from matrices in phosphate-buffered saline (PBS) or human blood plasma (BP) was studied. The introduction of DMSO in the ES blend decreased SRL release. The use of BP significantly accelerated SRL release through binding with serum biomolecules. The exchange of PBS or BP after every time point also increased SRL release. The maximum SRL release in BP was observed at 3 days. The matrices produced from the ES solution with DMSO and HSA released no more than 80% SRL after 27 days in BP, even under medium exchange conditions. Therefore, PCL-based matrices containing HSA, SRL, and DMSO can be used for coating VSs with prolonged SRL delivery.

8.
Polymers (Basel) ; 12(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272564

RESUMO

The biostability of the polyurethanes Tecoflex EG-80A and Pellethane 2363-80A, used as basic polymers of the vascular grafts (VGs) produced by electrospinning, as well as the tensile strength of Tecoflex VGs, are studied. Solutions of Tecoflex or Pellethane with gelatin and bivalirudin in 1,1,1,3,3,3-hexafluoroisopropanol are used for VG production. After 1, 12, and 24 weeks of VG implantation in the infrarenal position of the abdominal aorta of Wistar rats, VGs are explanted, fixed in formalin, freed from outer tissues, dialyzed, and dried. The polyurethanes are extracted from VGs by dispersion/extraction in tetrahydrofuran (THF) and freed from the excess of THF-insoluble biopolymers. The stability of polyurethanes is assessed by IR spectroscopy and gel permeation chromatography. Pellethane has emerged to be stable at all experimental points. Tecoflex loses approximately 10% of its molecular weight (both Mn and Mw) after 3 months and restored its initial value within 6 months of its functioning as a graft. Mechanical testing demonstrates a 30% reduction in the tensile strength after 3 months in VG and a 10% increase after 6 months. The stability and mechanical properties of polyurethane-based VGs demonstrate their utility for the reconstitution of damaged arteries.

9.
Sci Rep ; 10(1): 5271, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210287

RESUMO

Polymeric heart valves seem to be an attractive alternative to mechanical and biological prostheses as they are more durable, due to the superior properties of novel polymers, and have the biocompatibility and hemodynamics comparable to tissue substitutes. This study reports a comprehensive assessment of a nanocomposite based on the functionalised graphene oxide and poly(carbonate-urea)urethane with the trade name "Hastalex" in comparison with GORE-TEX, a commercial polymer routinely used for cardiovascular medical devices. Experimental data have proved that GORE-TEX has a 2.5-fold (longitudinal direction) and 3.5-fold (transverse direction) lower ultimate tensile strength in comparison with Hastalex (p < 0.05). The contact angles of Hastalex surfaces (85.2 ± 1.1°) significantly (p < 0.05) are lower than those of GORE-TEX (127.1 ± 6.8°). The highest number of viable cells Ea.hy 926 is on the Hastalex surface exceeding 7.5-fold when compared with the GORE-TEX surface (p < 0.001). The platelet deformation index for GORE-TEX is 2-fold higher than that of Hastalex polymer (p < 0.05). Calcium content is greater for GORE-TEX (8.4 mg/g) in comparison with Hastalex (0.55 mg/g). The results of this study have proven that Hastalex meets the main standards required for manufacturing artificial heart valves and has superior mechanical, hemocompatibility and calcific resistance properties in comparison with GORE-TEX.


Assuntos
Materiais Biocompatíveis , Grafite , Próteses Valvulares Cardíacas , Nanocompostos , Poliuretanos , Células A549 , Animais , Materiais Biocompatíveis/toxicidade , Calcinose/induzido quimicamente , Bovinos , Módulo de Elasticidade , Grafite/toxicidade , Hemólise/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Hibridomas/efeitos dos fármacos , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanocompostos/toxicidade , Nanocompostos/ultraestrutura , Pericárdio , Adesividade Plaquetária/efeitos dos fármacos , Polímeros/toxicidade , Politetrafluoretileno/toxicidade , Poliuretanos/toxicidade , Desenho de Prótese , Ratos , Ratos Wistar , Propriedades de Superfície , Resistência à Tração
10.
Biomed Mater ; 15(4): 045012, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32143210

RESUMO

The formation of a continuous layer of normally functioning endothelium on the lumen surface of small diameter vascular grafts is considered a prerequisite of their long-term functioning without stenosis. Thus, materials supporting not only endothelialization but also the normal functioning state of endotheliocytes are demanded. In this study, we have evaluated the functional state of human umbilical vein endothelial cells (HUVEC) cultivated on the surface of autologous decellularized human umbilical vein and electrospun polyurethane-based matrices by next generation sequencing gene expression profiling. Three types of matrices produced by electrospinning from hexafluoroisopropanol solutions of pure TECOFLEX™ EG-80A polyurethane, polyurethane with gelatin and polyurethane with gelatin and bivalirudin were studied. Cells cultivated on different supports were subjected to RNA-Seq profiling on an Illumina HiSeq platform. The data demonstrated that the structure of 3D matrices and the chemical composition of the fibers have a significant effect on the gene expression profiles of HUVEC. The results suggest that protein-enriched polyurethane-based 3D matrices represent a convenient surface for obtaining a normally functioning endothelial layer.


Assuntos
Endotélio Vascular/patologia , Endotélio/citologia , Perfilação da Expressão Gênica , Poliuretanos/química , Bioprótese , Prótese Vascular , Proliferação de Células , Eletroquímica , Gelatina/química , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Fenótipo , RNA/análise , Engenharia Tecidual/métodos , Alicerces Teciduais , Veias Umbilicais , Enxerto Vascular
11.
Materials (Basel) ; 12(24)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817735

RESUMO

Endothelization of the luminal surface of vascular grafts is required for their long-term functioning. Here, we have cultivated human endothelial cells (HUVEC) on different 3D matrices to assess cell proliferation, gene expression and select the best substrate for endothelization. 3D matrices were produced by electrospinning from solutions of poly(D,L-lactide-co-glycolide) (PLGA), polycaprolactone (PCL), and blends of PCL with gelatin (Gl) in hexafluoroisopropanol. Structure and surface properties of 3D matrices were characterized by SEM, AFM, and sessile drop analysis. Cell adhesion, viability, and proliferation were studied by SEM, Alamar Blue staining, and 5-ethynyl-2'-deoxyuridine (EdU) assay. Gene expression profiling was done on an Illumina HiSeq 2500 platform. Obtained data indicated that 3D matrices produced from PCL with Gl and treated with glutaraldehyde provide the most suitable support for HUVEC adhesion and proliferation. Transcriptome sequencing has demonstrated a minimal difference of gene expression profile in HUVEC cultivated on the surface of these matrices as compared to tissue culture plastic, thus confirming these matrices as the best support for endothelization.

12.
Biomed Mater ; 15(1): 015010, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31694007

RESUMO

General physicochemical properties of the vascular grafts (VGs) produced from the solutions of Tecoflex (Tec) with gelatin (GL) and bivalirudin (BV) by electrospinning are studied. The electrospun VGs of Tec-GL-BV and expanded polytetrafluoroethylene (e-PTFE) implanted in the abdominal aorta of 36 Wistar rats have been observed over different time intervals up to 24 weeks. A comparison shows that 94.5% of the Tec-GL-BV VGs and only 66.6% of e-PTFE VGs (р = 0.0438) are free of occlusions after a 6 month implantation. At the intermediate observation points, Tec-GL-BV VGs demonstrate severe neovascularization of the VG neoadventitial layer as compared with e-PTFE grafts. A histological examination demonstrates a small thickness of the neointima layer and a low level of calcification in Tec-GL-BV VGs as compared with the control grafts. Thus, polyurethane-based protein-enriched VGs have certain advantages over e-PTFE VGs, suggesting their utility in clinical studies.


Assuntos
Materiais Biocompatíveis/química , Prótese Vascular , Animais , Aorta Abdominal/patologia , Aorta Abdominal/cirurgia , Fenômenos Biomecânicos , Fenômenos Químicos , Feminino , Gelatina , Hirudinas , Masculino , Teste de Materiais , Modelos Animais , Neointima/patologia , Fragmentos de Peptídeos , Politetrafluoretileno/química , Poliuretanos/química , Ratos , Ratos Wistar , Proteínas Recombinantes
13.
Materials (Basel) ; 11(11)2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30400260

RESUMO

Paclitaxel is a natural, highly lipophilic anti proliferative drug widely used in medicine. We have studied the release of tritium-labeled paclitaxel (³H-PTX) from matrices destined for the coating of vascular stents and produced by the electrospinning method from the solutions of polycaprolactone (PCL) with paclitaxel (PTX) in hexafluoisopropanol (HFIP) and/or solutions of PCL with PTX and human serum albumin (HSA) in HFIP or HIFP-dimethyl sulphoxide (DMSO) blend. The release of PTX has been shown to depend on the composition of electrospinning solution, as well as the surrounding medium, particularly the concentration of free PTX and PTX-binding biomolecules present in human serum. It was shown that 3D matrices can completely release PTX without weight loss. Two-phase PTX release from optimized 3D matrices was obtained: ~27% of PTX was released in the first day, another 8% were released over the next 26 days. Wherein ~2.8%, ~2.3%, and ~0.25% of PTX was released on day 3, 9, and 27, respectively. Considering PTX toxicity, the rate of its diffusion through the arterial wall, and the data obtained the minimum cytostatic dose of the drug in the arterial wall will be maintained for at least three months.

14.
Biomed Res Int ; 2018: 1380606, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30046587

RESUMO

Properties of matrices manufactured by electrospinning from solutions of polyurethane Tecoflex EG-80A with gelatin in 1,1,1,3,3,3-hexafluoroisopropanol were studied. The concentration of gelatin added to the electrospinning solution was shown to influence the mechanical properties of matrices: the dependence of matrix tensile strength on protein concentration is described by a bell-shaped curve and an increase in gelatin concentration added to the elasticity of the samples. SEM, FTIR spectroscopy, and mechanical testing demonstrate that incubation of matrices in phosphate buffer changes the structure of the fibers and alters the polyurethane-gelatin interactions, increasing matrix durability. The ability of the matrices to maintain adhesion and proliferation of human endothelial cells was studied. The results suggest that matrices made of 3% polyurethane solution with 15% gelatin (wt/wt) and treated with glutaraldehyde are the optimal variant for cultivation of endothelial cells.


Assuntos
Poliuretanos/química , Engenharia Tecidual , Elasticidade , Células Endoteliais , Gelatina , Humanos , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA