Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 116: 109569, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36773572

RESUMO

Tumor-associated macrophages (TAMs) constitute the most prolific resident of the tumor microenvironment (TME) that regulate its TME into tumor suppressive or progressive milieu by utilizing immunoediting machinery. Here, the tumor cells construct an immunosuppressive microenvironment that educates TAMs to polarize from anti-tumor TAM-M1 to pro-tumor TAM-M2 phenotype consequently contributing to tumor progression. In colorectal cancer (CRC), the TME displays a prominent pro-tumorigenic immune profile with elevated expression of immune-checkpoint molecules notably PD-1, CTLA4, etc., in both MSI and ultra-mutated MSS tumors. This authenticated immune-checkpoint inhibition (ICI) immunotherapy as a pre-requisite for clinical benefit in CRC. However, in response to ICI, specifically, the MSIhi tumors evolved to produce novel immune escape variants thus undermining ICI. Lately, TAM-directed therapies extending from macrophage depletion to repolarization have enabled TME alteration. While TAM accrual implicates clinical benefit in CRC, sustained inflammatory insult may program TAMs to shift from M1 to M2 phenotype. Their ability to oscillate on both facets of the spectrum represents macrophage repolarization immunotherapy as an effective approach to treating CRC. In this review, we briefly discuss the differentiation heterogeneity of colonic macrophages that partake in macrophage-directed immunoediting mechanisms in CRC progression and its employment in macrophage re-polarization immunotherapy.


Assuntos
Neoplasias Colorretais , Macrófagos Associados a Tumor , Humanos , Macrófagos , Neoplasias Colorretais/patologia , Imunoterapia , Fenótipo , Microambiente Tumoral
2.
Int J Biol Macromol ; 211: 301-315, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35568152

RESUMO

Irinotecan-loaded solid lipid nanoparticles (IRI-SLNs) was formulated and tested for its potential activity against colon cancer. IRI-SLNs were prepared by applying the principles of DoE. Nanoparticles were further surface modified using chitosan. Characterizations such as size, poly-dispersity, surface charge, morphology, entrapment, drug release pattern, cytotoxicity were conducted. In-vivo studies in male Wistar rats were carried to ascertain distribution pattern of SLNs and their acute toxicity on various vital organs. Lastly, stability of the SLNs were evaluated. Particles had a size, polydispersity and zeta potential of 430.77 ± 8.69 nm, 0.36 ± 0.02 and -40.06 ± 0.61 mV, respectively. Entrapment of IRI was 62.24 ± 2.90% in IRI-SLNs. Sustained drug release was achieved at a colonic pH and long-term stability of NPs was seen. Cytotoxicity assay results showed that SLNs exhibited toxicity on HCT-116 cells. Biodistribution studies confirmed higher concentration of drug in the colon after surface modification. An acute toxicity study conducted for 7 days showed no severe toxic effects on major organs. Thus, we picture that the developed SLNs may benefit in delivering IRI to the tumour cells, therefore decreasing the dose and dose-associated toxicities.


Assuntos
Quitosana , Neoplasias do Colo , Nanopartículas , Animais , Quitosana/química , Neoplasias do Colo/tratamento farmacológico , Portadores de Fármacos/química , Irinotecano , Lipídeos/química , Lipossomos , Masculino , Nanopartículas/química , Tamanho da Partícula , Ratos , Ratos Wistar , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA