Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 191(9): 593, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31456055

RESUMO

Forests are the potential source for managing carbon sequestration, regulating climate variations and balancing universal carbon equilibrium between sources and sinks. Further, assessment of biomass, carbon stock, and its spatial distribution is prerequisite for monitoring the health of forest ecosystem. Moreover, vegetation field inventories are valuable source of data for estimating aboveground biomass (AGB), density, and the carbon stored in biomass of forest vegetation. In view of the importance of biomass, the present study makes an attempt to estimate temporal AGB of Tripura State, India, using Moderate Resolution Imaging Spectroradiometer (MODIS), normalized difference vegetation index (NDVI), leaf area index (LAI) and the field inventory data through geospatial techniques. A model was developed for establishing the relationship between biomass, LAI, and NDVI in the selected study site. The study also aimed to improve method for quantifying and verifying inventory-based biomass stock estimation. The results demonstrate the correlation value obtained between LAI and NDVI were 0.87 and 0.53 for the years 2011 and 2014, respectively. The correlation value between estimated AGB with LAI were found as 0.66 and 0.69, while with NDVI, the values were obtained as 0.64 and 0.94 for the years 2011 and 2014, respectively. The regression model of measured biomass with MODIS NDVI and LAI was developed for the data obtained during the period 2011-2014. The developed model was used to estimate the spatial distribution of biomass and its relationship between LAI and NDVI. The R2 values obtained were 0.832 for estimated and the measured AGB during the training and 0.826 for the validation. The results indicate that the methodology adopted in this study can help in selecting best fit model for analyzing relationship between AGB and NDVI/LAI and for estimating biomass using allometric equation at various spatial scales. The developed output thematic map showed an average biomass distribution of 32-94 Mg ha-1. The highest biomass values (72-95 Mg ha -1) was confined to the dense region of the forest while the lowest biomass values (32-46 Mg ha-1) was identified in the outer regions of the study site.


Assuntos
Biomassa , Monitoramento Ambiental/métodos , Florestas , Tecnologia de Sensoriamento Remoto , Índia , Folhas de Planta , Plantas , Imagens de Satélites , Análise Espacial
2.
Glob Chang Biol ; 25(1): 174-186, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30549201

RESUMO

There is an increasing evidence that smallholder farms contribute substantially to food production globally, yet spatially explicit data on agricultural field sizes are currently lacking. Automated field size delineation using remote sensing or the estimation of average farm size at subnational level using census data are two approaches that have been used. However, both have limitations, for example, automatic field size delineation using remote sensing has not yet been implemented at a global scale while the spatial resolution is very coarse when using census data. This paper demonstrates a unique approach to quantifying and mapping agricultural field size globally using crowdsourcing. A campaign was run in June 2017, where participants were asked to visually interpret very high resolution satellite imagery from Google Maps and Bing using the Geo-Wiki application. During the campaign, participants collected field size data for 130 K unique locations around the globe. Using this sample, we have produced the most accurate global field size map to date and estimated the percentage of different field sizes, ranging from very small to very large, in agricultural areas at global, continental, and national levels. The results show that smallholder farms occupy up to 40% of agricultural areas globally, which means that, potentially, there are many more smallholder farms in comparison with the two different current global estimates of 12% and 24%. The global field size map and the crowdsourced data set are openly available and can be used for integrated assessment modeling, comparative studies of agricultural dynamics across different contexts, for training and validation of remote sensing field size delineation, and potential contributions to the Sustainable Development Goal of Ending hunger, achieve food security and improved nutrition and promote sustainable agriculture.


Assuntos
Crowdsourcing/estatística & dados numéricos , Fazendas , Imagens de Satélites , Agricultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA