Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Ther ; 31(12): 3531-3544, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37805713

RESUMO

In vivo apoptosis of human mesenchymal stromal cells (MSCs) plays a critical role in delivering immunomodulation. Yet, caspase activity not only mediates the dying process but also death-independent functions that may shape the immunogenicity of apoptotic cells. Therefore, a better characterization of the immunological profile of apoptotic MSCs (ApoMSCs) could shed light on their mechanistic action and therapeutic applications. We analyzed the transcriptomes of MSCs undergoing apoptosis and identified several immunomodulatory factors and chemokines dependent on caspase activation following Fas stimulation. The ApoMSC secretome inhibited human T cell proliferation and activation, and chemoattracted monocytes in vitro. Both immunomodulatory activities were dependent on the cyclooxygenase2 (COX2)/prostaglandin E2 (PGE2) axis. To assess the clinical relevance of ApoMSC signature, we used the peripheral blood mononuclear cells (PBMCs) from a cohort of fistulizing Crohn's disease (CD) patients who had undergone MSC treatment (ADMIRE-CD). Compared with healthy donors, MSCs exposed to patients' PBMCs underwent apoptosis and released PGE2 in a caspase-dependent manner. Both PGE2 and apoptosis were significantly associated with clinical responses to MSCs. Our findings identify a new mechanism whereby caspase activation delivers ApoMSC immunosuppression. Remarkably, such molecular signatures could implicate translational tools for predicting patients' clinical responses to MSC therapy in CD.


Assuntos
Doença de Crohn , Células-Tronco Mesenquimais , Humanos , Doença de Crohn/genética , Doença de Crohn/terapia , Dinoprostona/metabolismo , Leucócitos Mononucleares/metabolismo , Secretoma , Células-Tronco Mesenquimais/metabolismo , Imunomodulação , Apoptose , Caspases
2.
Dev Cell ; 58(17): 1548-1561.e10, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37442140

RESUMO

Tumor-associated macrophages (TAMs) are a heterogeneous population of cells that facilitate cancer progression. However, our knowledge of the niches of individual TAM subsets and their development and function remain incomplete. Here, we describe a population of lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1)-expressing TAMs, which form coordinated multi-cellular "nest" structures that are heterogeneously distributed proximal to vasculature in tumors of a spontaneous murine model of breast cancer. We demonstrate that LYVE-1+ TAMs develop in response to IL-6, which induces their expression of the immune-suppressive enzyme heme oxygenase-1 and promotes a CCR5-dependent signaling axis, which guides their nest formation. Blocking the development of LYVE-1+ TAMs or their nest structures, using gene-targeted mice, results in an increase in CD8+ T cell recruitment to the tumor and enhanced response to chemotherapy. This study highlights an unappreciated collaboration of a TAM subset to form a coordinated niche linked to immune exclusion and resistance to anti-cancer therapy.


Assuntos
Neoplasias , Camundongos , Animais , Neoplasias/patologia , Macrófagos/metabolismo
3.
Cancer Discov ; 13(6): 1346-1363, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36929873

RESUMO

Intestinal metaplasia in the esophagus (Barrett's esophagus IM, or BE-IM) and stomach (GIM) are considered precursors for esophageal and gastric adenocarcinoma, respectively. We hypothesize that BE-IM and GIM follow parallel developmental trajectories in response to differing inflammatory insults. Here, we construct a single-cell RNA-sequencing atlas, supported by protein expression studies, of the entire gastrointestinal tract spanning physiologically normal and pathologic states including gastric metaplasia in the esophagus (E-GM), BE-IM, atrophic gastritis, and GIM. We demonstrate that BE-IM and GIM share molecular features, and individual cells simultaneously possess transcriptional properties of gastric and intestinal epithelia, suggesting phenotypic mosaicism. Transcriptionally E-GM resembles atrophic gastritis; genetically, it is clonal and has a lower mutational burden than BE-IM. Finally, we show that GIM and BE-IM acquire a protumorigenic, activated fibroblast microenvironment. These findings suggest that BE-IM and GIM can be considered molecularly similar entities in adjacent organs, opening the path for shared detection and treatment strategies. SIGNIFICANCE: Our data capture the gradual molecular and phenotypic transition from a gastric to intestinal phenotype (IM) in the esophagus and stomach. Because BE-IM and GIM can predispose to cancer, this new understanding of a common developmental trajectory could pave the way for a more unified approach to detection and treatment. See related commentary by Stachler, p. 1291. This article is highlighted in the In This Issue feature, p. 1275.


Assuntos
Esôfago de Barrett , Gastrite Atrófica , Humanos , RNA , Metaplasia/genética , Esôfago/metabolismo , Esôfago/patologia , Esôfago de Barrett/genética , Esôfago de Barrett/metabolismo , Esôfago de Barrett/patologia , Análise de Sequência de RNA , Microambiente Tumoral
4.
Front Immunol ; 11: 1338, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670295

RESUMO

The immunosuppressive activity of mesenchymal stromal cells (MSCs) in graft versus host disease (GvHD) is well-documented, but their therapeutic benefit is rather unpredictable. Prospective randomized clinical trials remain the only means to address MSC clinical efficacy. However, the imperfect understanding of MSC biological mechanisms has undermined patients' stratification and the successful design of clinical studies. Furthermore, although MSC efficacy seems to be dependent on patient-associated factors, the role of patients' signature to predict and/or monitor clinical outcomes remains poorly elucidated. The analysis of GvHD patient serum has identified a set of molecules that are associated with high mortality. However, despite their importance in defining GvHD severity, their role in predicting or monitoring response to MSCs has not been confirmed. A new perspective on the use of MSCs for GvHD has been prompted by the recent findings that MSCs are actively induced to undergo apoptosis by recipient cytotoxic cells and that this process is essential to initiate MSC-induced immunosuppression. This discovery has not only reconciled the conundrum between MSC efficacy and their lack of engraftment, but also highlighted the determinant role of the patient in promoting and delivering MSC immunosuppression. In this review we will revisit the extensive use of MSCs for the treatment of GvHD and will elaborate on the need that future clinical trials must depend on mechanistic approaches that facilitate the development of robust and consistent assays to stratify patients and monitor clinical outcomes.


Assuntos
Doença Enxerto-Hospedeiro , Imunoterapia/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/imunologia , Animais , Biomarcadores/análise , Humanos
6.
Semin Immunol ; 35: 59-68, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29395680

RESUMO

Several studies have demonstrated how different cell types of mesenchymal and myeloid origin can independently exhibit immunoregulatory activities. In response to inflammatory cues, they transcribe a molecular repertoire that restores the tissue microenvironment to what it was before the injury. There is accumulating evidence that stromal and myeloid-derived cells do not act independently but that the establishment of a cross-talk between them is a fundamental requirement. Stromal cells, prompted by inflammatory molecules, orchestrate and initiate myeloid cell recruitment and their functional reprogramming. Once instructed, myeloid cells effect the anti-inflammatory activity or, if alternatively required, enhance immune responses. The cross-talk plays a fundamental role in tissue homeostasis, not only to regulate inflammation, but also to promote tissue regeneration and cancer progression.


Assuntos
Inflamação/imunologia , Células-Tronco Mesenquimais/imunologia , Células Mieloides/imunologia , Animais , Carcinogênese , Comunicação Celular , Reprogramação Celular , Humanos , Imunidade , Imunomodulação , Regeneração
7.
Sci Transl Med ; 9(416)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29141887

RESUMO

The immunosuppressive activity of mesenchymal stromal cells (MSCs) is well documented. However, the therapeutic benefit is completely unpredictable, thus raising concerns about MSC efficacy. One of the affecting factors is the unresolved conundrum that, despite being immunosuppressive, MSCs are undetectable after administration. Therefore, understanding the fate of infused MSCs could help predict clinical responses. Using a murine model of graft-versus-host disease (GvHD), we demonstrate that MSCs are actively induced to undergo perforin-dependent apoptosis by recipient cytotoxic cells and that this process is essential to initiate MSC-induced immunosuppression. When examining patients with GvHD who received MSCs, we found a striking parallel, whereby only those with high cytotoxic activity against MSCs responded to MSC infusion, whereas those with low activity did not. The need for recipient cytotoxic cell activity could be replaced by the infusion of apoptotic MSCs generated ex vivo. After infusion, recipient phagocytes engulf apoptotic MSCs and produce indoleamine 2,3-dioxygenase, which is ultimately necessary for effecting immunosuppression. Therefore, we propose the innovative concept that patients should be stratified for MSC treatment according to their ability to kill MSCs or that all patients could be treated with ex vivo apoptotic MSCs.


Assuntos
Apoptose/fisiologia , Células-Tronco Mesenquimais/citologia , Animais , Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/fisiopatologia , Humanos , Imunomodulação/genética , Imunomodulação/fisiologia , Terapia de Imunossupressão/métodos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia
8.
Toxicol Res (Camb) ; 5(1): 318-330, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30090348

RESUMO

Tendon injuries occur commonly in sports and workplace. Tendon-derived stem cells (TDSCs) have great potential for tendon healing because they can differentiate into functional tenocytes. To grow TDSCs properly in vivo, a scaffold is needed. Silver nanoparticles (AgNPs) have been used in a range of biomedical applications for their anti-bacterial and -inflammatory effects. AgNPs are therefore expected to be a good scaffolding coating material for tendon engineering. Yet, their cytotoxicity in TDSCs remains unknown. Moreover, their sublethal effects were mysterious in TDSCs. In our study, decahedral AgNPs (43.5 nm in diameter) coated with polyvinylpyrrolidone (PVP) caused a decrease in TDSCs' viability beginning at 37.5 µg ml-1 but showed non-cytotoxic effects at concentrations below 18.8 µg ml-1. Apoptosis was observed in the TDSCs when higher doses of AgNPs (75-150 µg ml-1) were used. Mechanistically, AgNPs induced reactive oxygen species (ROS) formation and mitochondrial membrane potential (MMP) depolarization, resulting in apoptosis. Interestingly, treating TDSCs with N-acetyl-l-cysteine (NAC) antioxidant significantly antagonized the ROS formation, MMP depolarization and apoptosis indicating that ROS accumulation was a prominent mediator in the AgNP-induced cytotoxicity. On the other hand, AgNPs inhibited the tendon markers' mRNA expression (0-15 µg ml-1), proliferation and clonogenicity (0-15 µg ml-1) in TDSCs under non-cytotoxic concentrations. Taken together, we have reported here for the first time that the decahedral AgNPs are cytotoxic to rat TDSCs and their sublethal effects are also detrimental to stem cells' proliferation and tenogenic differentiation. Therefore, AgNPs are not a good scaffolding coating material for tendon engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA