Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dent Mater ; 40(7): 1031-1040, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38755041

RESUMO

Development of restorative materials capable of mimicking optical and mechanical performance of natural teeth is a quest in aesthetic density. Yttria-Stabilized Zirconia (YSZ) ceramics represent one of the most popular choices for dental restorations, owing to their biocompatibility, white colour, and the possibility to use CAD-CAM technologies. In particular, YSZ doped with 3 mol. % yttria (3YSZ) is popular because it presents high strength. Nonetheless, the limited light transmission of commercially available high strength 3YSZ does not meet the requirements of highly aesthetic cases. On the other side, YSZ presenting a larger portion of yttria are more translucent but exhibit modest strength. Here, we report on fabrication of dense zirconia nanostructures in bulk form via conventional pressure-less sintering at temperatures down to 1100-1200 °C, achieving highly translucent and strong 3YSZ with significant opalescent behaviour. Both Hall-Petch and inverse Hall-Petch relationship were observed in 3YSZ samples with average grain size in the range of 250 nm and 55 nm, demonstrating the importance of grain size control to enhance both optical and mechanical properties of zirconia ceramics, simultaneously. Maximum biaxial strength of 1980 ± 260 MPa, in-line light transmission of 38% in the visible spectrum and opalescence approaching that of enamel were obtained at optimum grain size of 80 ± 5 nm. The notable optical properties are linked to the miniaturization of the residual pores and refinement of grain size towards the nanoscale while the superior mechanical strength is justified by the activation of different energy dissipation processes at nano and macroscale.


Assuntos
Cerâmica , Teste de Materiais , Ítrio , Zircônio , Zircônio/química , Ítrio/química , Cerâmica/química , Propriedades de Superfície , Nanoestruturas/química , Materiais Dentários/química , Microscopia Eletrônica de Varredura
2.
Acta Biomater ; 175: 411-421, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38135205

RESUMO

Due to their outstanding elastic limit, biocompatible Ti-based bulk metallic glasses (BMGs) are candidate materials to decrease the size of medical implants and therefore reduce their invasiveness. However, the practical use of classical Ti-BMGs in medical applications is in part hindered by their high copper content: more effort is thus required to design low-copper Ti-BMGs. In this work, in line with current rise in AI-driven tools, machine learning (ML) approaches, a neural-network ML model is used to explore the glass-forming ability (GFA) of unreported low-copper compositions within the biocompatible Ti-Zr-Cu-Pd system. Two types of models are trained and compared: one based on the alloy composition only, and a second based on various features derived from the alloying elements. Contrary to expectation, the predictive power of both models in evaluating GFA is similar. The compositional space identified by ML as promising is experimentally assessed, finding unfortunately low GFA. These results indicate that the ML approach may be premature for specific composition tuning of amorphous metallic materials. We emphasise that the development of ML tools in GFA prediction requires an improvement of the dataset, in terms of homogeneity, size and GFA descriptors, which must be supported by increased reporting of high-quality experimental GFA measurements, both positive and negative. STATEMENT OF SIGNIFICANCE: Biocompatible Ti-based bulk metallic glasses (BMGs) are candidate materials for use in the next generation of minimally invasive dental implants where improved mechanical properties, such as high strength are required. Despite promising in vitro/vivo evaluations, implementation of alloys for practical applications is partly hindered by the presence of copper as the main alloying element. Recent studies have presented AI-guided and machine learning strategies as appealing approaches to understand and describe the glass forming ability (GFA) of BMG-forming compositions. In this work, we employ and evaluate the capacity of a machine-learning model to explore low-copper compositional spaces in the biocompatible Ti-Zr-Cu-Pd system. Our results highlight the limits of such a computational approach and suggest improvements for future designing routes.


Assuntos
Cobre , Titânio , Vidro , Ligas , Próteses e Implantes , Materiais Biocompatíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA