Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Am J Physiol Renal Physiol ; 325(5): F595-F617, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37675460

RESUMO

Despite significant advances in renal physiology, the global prevalence of chronic kidney disease (CKD) continues to increase. The emergence of multicellular organisms gave rise to increasing complexity of life resulting in trade-offs reflecting ancestral adaptations to changing environments. Three evolutionary traits shape CKD over the lifespan: 1) variation in nephron number at birth, 2) progressive nephron loss with aging, and 3) adaptive kidney growth in response to decreased nephron number. Although providing plasticity in adaptation to changing environments, the cell cycle must function within constraints dictated by available energy. Prioritized allocation of energy available through the placenta can restrict fetal nephrogenesis, a risk factor for CKD. Moreover, nephron loss with aging is a consequence of cell senescence, a pathway accelerated by adaptive nephron hypertrophy that maintains metabolic homeostasis at the expense of increased vulnerability to stressors. Driven by reproductive fitness, natural selection operates in early life but diminishes thereafter, leading to an exponential increase in CKD with aging, a product of antagonistic pleiotropy. A deeper understanding of the evolutionary constraints on the cell cycle may lead to manipulation of the balance between progenitor cell renewal and differentiation, regulation of cell senescence, and modulation of the balance between cell proliferation and hypertrophy. Application of an evolutionary perspective may enhance understanding of adaptation and maladaptation by nephrons in the progression of CKD, leading to new therapeutic advances.

2.
Evol Med Public Health ; 11(1): 316-317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711226
3.
Physiol Rev ; 103(4): 2451-2506, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36996412

RESUMO

Chronic kidney disease (CKD) affects >10% of the world population, with increasing prevalence in middle age. The risk for CKD is dependent on the number of functioning nephrons through the life cycle, and 50% of nephrons are lost through normal aging, revealing their vulnerability to internal and external stressors. Factors responsible for CKD remain poorly understood, with limited availability of biomarkers or effective therapy to slow progression. This review draws on the disciplines of evolutionary medicine and bioenergetics to account for the heterogeneous nephron injury that characterizes progressive CKD following episodes of acute kidney injury with incomplete recovery. The evolution of symbiosis in eukaryotes led to the efficiencies of oxidative phosphorylation and the rise of metazoa. Adaptations to ancestral environments are the products of natural selection that have shaped the mammalian nephron with its vulnerabilities to ischemic, hypoxic, and toxic injury. Reproductive fitness rather than longevity has served as the driver of evolution, constrained by available energy and its allocation to homeostatic responses through the life cycle. Metabolic plasticity has evolved in parallel with robustness necessary to preserve complex developmental programs, and adaptations that optimize survival through reproductive years can become maladaptive with aging, reflecting antagonistic pleiotropy. Consequently, environmental stresses promote trade-offs and mismatches that result in cell fate decisions that ultimately lead to nephron loss. Elucidation of the bioenergetic adaptations by the nephron to ancestral and contemporary environments may lead to the development of new biomarkers of kidney disease and new therapies to reduce the global burden of progressive CKD.


Assuntos
Rim , Insuficiência Renal Crônica , Pessoa de Meia-Idade , Animais , Humanos , Rim/metabolismo , Néfrons/metabolismo , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/metabolismo , Envelhecimento , Metabolismo Energético , Mamíferos
4.
Pediatr Rep ; 15(1): 143-153, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36810342

RESUMO

The global prevalence of chronic kidney disease (CKD) is increasing rapidly, due to increasing environmental stressors through the life cycle. Congenital anomalies of kidney and urinary tract (CAKUT) account for most CKD in children, with a spectrum that can lead to kidney failure from early postnatal to late adult life. A stressed fetal environment can impair nephrogenesis, now recognized as a significant risk factor for the development of adult CKD. Congenital urinary tract obstruction is the leading cause of CKD due to CAKUT and can itself impair nephrogenesis as well as contribute to progressive nephron injury. Early diagnosis by ultrasonography in fetal life by an obstetrician/perinatologist can provide important information for guiding prognosis and future management. This review focuses on the critical role played by the pediatrician in providing timely evaluation and management of the patient from the moment of birth to the transfer to adult care. In addition to genetic factors, vulnerability of the kidney to CKD is a consequence of evolved modulation of nephron number in response to maternal signaling as well as to susceptibility of the nephron to hypoxic and oxidative injury. Future advances in the management of CAKUT will depend on improved biomarkers and imaging techniques.

5.
Pediatr Nephrol ; 38(12): 3947-3954, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36625931

RESUMO

The International Study of Kidney Disease in Children (ISKDC), begun in 1966, conducted the first international collaborative randomized blinded controlled trial in pediatric nephrology and one of the first in either pediatrics or nephrology. For this trial, the ISKDC developed the criteria, such as those for response and relapse, used today to describe the clinical course of the nephrotic syndrome, and the trial generated the nephropathologic terminology and criteria which largely remain the current standards. Over an approximately 20-year span, the ISKDC followed the natural history and evaluated the therapeutic effectiveness of therapies in over 500 children with the nephrotic syndrome from three continents. It published 14 peer-reviewed studies and several reports and commentaries, many of which helped create current standards of practice for therapy of childhood nephrotic syndrome and consequently remain highly cited today. The ISKDC continues to be an important model for subsequent collaborative studies and was the impetus for the development of regional and national pediatric nephrology societies leading to the recognition and growth of pediatric nephrology as a separate subspecialty. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Nefropatias , Nefrologia , Síndrome Nefrótica , Criança , Humanos , Síndrome Nefrótica/terapia , Síndrome Nefrótica/tratamento farmacológico , Nefropatias/terapia , Nefropatias/tratamento farmacológico , Recidiva , Esquema de Medicação
6.
Exp Physiol ; 107(5): 410-414, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35037332

RESUMO

NEW FINDINGS: What is the topic of this review? In this report, we summarize the latest clinical evidence linking developmental programming in the kidney to later life blood pressure and kidney disease. What advances does it highlight? Population-level studies now show convincingly that low birth weight, fetal growth restriction and preterm birth are associated with and have a synergistic impact on the risk of kidney disease in later life. A new approach also considers how evolutionary selection pressure might fail to select for long-term robustness of kidney function. ABSTRACT: The global burden of kidney disease is high and rising. The risk of kidney disease among individuals is highly variable, in part related to genetic and environmental factors, but also likely to be modulated by developmental programming of the number of nephrons and kidney function in fetal life. The number of nephrons varies widely across the population and is lower among those who were born small or preterm. Population registry evidence clearly shows an association between these birth circumstances and later-life risk of hypertension and kidney disease, not only for chronic kidney disease but also for acquired kidney disease, demonstrating an inherent susceptibility to kidney disease in these individuals. Gestational stressors impact kidney development, a process that is likely to be layered upon the evolutionary history of the kidney and how the organ has developed in response to selection pressure to support reproductive capacity in early adulthood, but not to withstand multiple stresses later in life. Reducing the global burden of kidney disease in future generations will require both individual- and population/environment-level risks to be addressed.


Assuntos
Hipertensão , Nascimento Prematuro , Insuficiência Renal Crônica , Adulto , Feminino , Humanos , Recém-Nascido , Rim , Masculino , Néfrons , Gravidez
7.
Evol Med Public Health ; 9(1): 220, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34285808
9.
Kidney360 ; 1(8): 863-879, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-35372951

RESUMO

There is greater than tenfold variation in nephron number of the human kidney at birth. Although low nephron number is a recognized risk factor for CKD, its determinants are poorly understood. Evolutionary medicine represents a new discipline that seeks evolutionary explanations for disease, broadening perspectives on research and public health initiatives. Evolution of the kidney, an organ rich in mitochondria, has been driven by natural selection for reproductive fitness constrained by energy availability. Over the past 2 million years, rapid growth of an energy-demanding brain in Homo sapiens enabled hominid adaptation to environmental extremes through selection for mutations in mitochondrial and nuclear DNA epigenetically regulated by allocation of energy to developing organs. Maternal undernutrition or hypoxia results in intrauterine growth restriction or preterm birth, resulting in low birth weight and low nephron number. Regulated through placental transfer, environmental oxygen and nutrients signal nephron progenitor cells to reprogram metabolism from glycolysis to oxidative phosphorylation. These processes are modulated by counterbalancing anabolic and catabolic metabolic pathways that evolved from prokaryote homologs and by hypoxia-driven and autophagy pathways that evolved in eukaryotes. Regulation of nephron differentiation by histone modifications and DNA methyltransferases provide epigenetic control of nephron number in response to energy available to the fetus. Developmental plasticity of nephrogenesis represents an evolved life history strategy that prioritizes energy to early brain growth with adequate kidney function through reproductive years, the trade-off being increasing prevalence of CKD delayed until later adulthood. The research implications of this evolutionary analysis are to identify regulatory pathways of energy allocation directing nephrogenesis while accounting for the different life history strategies of animal models such as the mouse. The clinical implications are to optimize nutrition and minimize hypoxic/toxic stressors in childbearing women and children in early postnatal development.


Assuntos
Néfrons , Nascimento Prematuro , Insuficiência Renal Crônica , Adulto , Metabolismo Energético/genética , Feminino , Humanos , Recém-Nascido , Masculino , Placenta/metabolismo , Gravidez , Nascimento Prematuro/metabolismo , Prevalência , Insuficiência Renal Crônica/epidemiologia , Fatores de Risco
10.
Semin Cell Dev Biol ; 91: 119-131, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29857053

RESUMO

There is a global epidemic of chronic kidney disease (CKD) characterized by a progressive loss of nephrons, ascribed in large part to a rising incidence of hypertension, metabolic syndrome, and type 2 diabetes mellitus. There is a ten-fold variation in nephron number at birth in the general population, and a 50% overall decrease in nephron number in the last decades of life. The vicious cycle of nephron loss stimulating hypertrophy by remaining nephrons and resulting in glomerulosclerosis has been regarded as maladaptive, and only partially responsive to angiotensin inhibition. Advances over the past century in kidney physiology, genetics, and development have elucidated many aspects of nephron formation, structure and function. Parallel advances have been achieved in evolutionary biology, with the emergence of evolutionary medicine, a discipline that promises to provide new insight into the treatment of chronic disease. This review provides a framework for understanding the origins of contemporary developmental nephrology, and recent progress in evolutionary biology. The establishment of evolutionary developmental biology (evo-devo), ecological developmental biology (eco-devo), and developmental origins of health and disease (DOHaD) followed the discovery of the hox gene family, the recognition of the contribution of cumulative environmental stressors to the changing phenotype over the life cycle, and mechanisms of epigenetic regulation. The maturation of evolutionary medicine has contributed to new investigative approaches to cardiovascular disease, cancer, and infectious disease, and promises the same for CKD. By incorporating these principles, developmental nephrology is ideally positioned to answer important questions regarding the fate of nephrons from embryo through senescence.


Assuntos
Biologia do Desenvolvimento/métodos , Evolução Molecular , Néfrons/metabolismo , Insuficiência Renal Crônica/genética , Animais , Biologia do Desenvolvimento/tendências , Epigênese Genética/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Néfrons/citologia , Néfrons/embriologia , Organogênese/genética , Insuficiência Renal Crônica/embriologia , Insuficiência Renal Crônica/patologia
11.
Clin Sci (Lond) ; 132(23): 2519-2545, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30442812

RESUMO

Congenital obstructive nephropathy is a major cause of chronic kidney disease (CKD) in children. The contribution of changes in the identity of renal cells to the pathology of obstructive nephropathy is poorly understood. Using a partial unilateral ureteral obstruction (pUUO) model in genetically modified neonatal mice, we traced the fate of cells derived from the renal stroma, cap mesenchyme, ureteric bud (UB) epithelium, and podocytes using Foxd1Cre, Six2Cre, HoxB7Cre, and Podocyte.Cre mice respectively, crossed with double fluorescent reporter (membrane-targetted tandem dimer Tomato (mT)/membrane-targetted GFP (mG)) mice. Persistent obstruction leads to a significant loss of tubular epithelium, rarefaction of the renal vasculature, and decreased renal blood flow (RBF). In addition, Forkhead Box D1 (Foxd1)-derived pericytes significantly expanded in the interstitial space, acquiring a myofibroblast phenotype. Degeneration of Sine Oculis Homeobox Homolog 2 (Six2) and HoxB7-derived cells resulted in significant loss of glomeruli, nephron tubules, and collecting ducts. Surgical release of obstruction resulted in striking regeneration of tubules, arterioles, interstitium accompanied by an increase in blood flow to the level of sham animals. Contralateral kidneys with remarkable compensatory response to kidney injury showed an increase in density of arteriolar branches. Deciphering the mechanisms involved in kidney repair and regeneration post relief of obstruction has potential therapeutic implications for infants and children and the growing number of adults suffering from CKD.


Assuntos
Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Hidronefrose/prevenção & controle , Rim/cirurgia , Regeneração , Obstrução Ureteral/cirurgia , Animais , Animais Recém-Nascidos , Rastreamento de Células/métodos , Modelos Animais de Doenças , Fibrose , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hidronefrose/genética , Hidronefrose/metabolismo , Hidronefrose/patologia , Rim/metabolismo , Rim/patologia , Rim/fisiopatologia , Camundongos Transgênicos , Neovascularização Fisiológica , Estresse Oxidativo , Fenótipo , Circulação Renal , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
14.
Kidney Int Rep ; 2(3): 302-317, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28845468

RESUMO

Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

15.
BMC Syst Biol ; 11(1): 31, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28249581

RESUMO

BACKGROUND: Although renal fibrosis and inflammation have shown to be involved in the pathophysiology of obstructive nephropathies, molecular mechanisms underlying evolution of these processes remain undetermined. In an attempt towards improved understanding of obstructive nephropathy and improved translatability of the results to clinical practice we have developed a systems biology approach combining omics data of both human and mouse obstructive nephropathy. RESULTS: We have studied in parallel the urinary miRNome of infants with ureteropelvic junction obstruction and the kidney tissue miRNome and transcriptome of the corresponding neonatal partial unilateral ureteral obstruction (UUO) mouse model. Several hundreds of miRNAs and mRNAs displayed changed abundance during disease. Combination of miRNAs in both species and associated mRNAs let to the prioritization of five miRNAs and 35 mRNAs associated to disease. In vitro and in vivo validation identified consistent dysregulation of let-7a-5p and miR-29-3p and new potential targets, E3 ubiquitin-protein ligase (DTX4) and neuron navigator 1 (NAV1), potentially involved in fibrotic processes, in obstructive nephropathy in both human and mice that would not be identified otherwise. CONCLUSIONS: Our study is the first to correlate a mouse model of neonatal partial UUO with human UPJ obstruction in a comprehensive systems biology analysis. Our data revealed let-7a and miR-29b as molecules potentially involved in the development of fibrosis in UPJ obstruction via the control of DTX4 in both man and mice that would not be identified otherwise.


Assuntos
MicroRNAs/genética , Terapia de Alvo Molecular , Pelve , Biologia de Sistemas , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/genética , Animais , Estudos de Casos e Controles , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Am J Physiol Renal Physiol ; 311(1): F145-61, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27194714

RESUMO

There is an alarming global increase in the incidence of end-stage kidney disease, for which early biomarkers and effective treatment options are lacking. Largely based on the histology of the end-stage kidney and on the model of unilateral ureteral obstruction, current investigation is focused on the pathogenesis of renal interstitial fibrosis as a central mechanism in the progression of chronic kidney disease (CKD). It is now recognized that cumulative episodes of acute kidney injury (AKI) can lead to CKD, and, conversely, CKD is a risk factor for AKI. Based on recent and historic studies, this review shifts attention from the glomerulus and interstitium to the proximal tubule as the primary sensor and effector in the progression of CKD as well as AKI. Packed with mitochondria and dependent on oxidative phosphorylation, the proximal tubule is particularly vulnerable to injury (obstructive, ischemic, hypoxic, oxidative, metabolic), resulting in cell death and ultimately in the formation of atubular glomeruli. Animal models of human glomerular and tubular disorders have provided evidence for a broad repertoire of morphological and functional responses of the proximal tubule, revealing processes of degeneration and repair that may lead to new therapeutic strategies. Most promising are studies that encompass the entire life cycle from fetus to senescence, recognizing epigenetic factors. The application of techniques in molecular characterization of tubule segments and the development of human kidney organoids may provide new insights into the mammalian kidney subjected to stress or injury, leading to biomarkers of early CKD and new therapies.


Assuntos
Nefropatias/patologia , Glomérulos Renais/patologia , Túbulos Renais Proximais/patologia , Túbulos Renais/patologia , Animais , Humanos
17.
Pediatr Nephrol ; 31(9): 1411-20, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26667236

RESUMO

Congenital obstructive nephropathy (CON) is the leading cause of chronic kidney disease (CKD) in children. Anomalies of the urinary tract are often associated with abnormal nephrogenesis, which is compounded by obstructive injury and by maternal risk factors associated with low birth weight. Currently available fetal and postnatal imaging and analytes of amniotic fluid, urine, or blood lack predictive value. For ureteropelvic junction obstruction, biomarkers are needed for optimal timing of pyeloplasty; for posterior urethral valves, biomarkers of long-term prognosis and CKD are needed. The initial nephron number may be a major determinant of progression of CKD, and most patients with CON who progress to renal failure reach this point in adulthood, presumably compounded by episodes of acute kidney injury. Biomarkers of tubular injury may be of particular value in predicting the need for surgical intervention or in tracking progression of CKD, and must be adjusted for patient age. Discovery of new biomarkers may depend on "unbiased" proteomics, whereby patterns of urinary peptide fragments from patients with CON are analyzed in comparison to controls. Most promising are the analysis of urinary exosomes (restricting biomarkers to relevant tubular cells) and quantitative magnetic resonance imaging techniques allowing precise determination of nephron number and tubular mass. The greatest need is for large prospective multicenter studies with centralized biomarker sample repositories to follow patients with CON from fetal life through adulthood.


Assuntos
Biomarcadores , Obstrução Ureteral/diagnóstico , Criança , Humanos , Rim , Prognóstico , Estudos Prospectivos
18.
Adv Chronic Kidney Dis ; 22(4): 312-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26088076

RESUMO

Maldevelopment of the collecting system resulting in urinary tract obstruction (UTO) is the leading identifiable cause of CKD in children. Specific etiologies are unknown; most cases are suspected by discovering hydronephrosis on prenatal ultrasonography. Congenital UTO can reduce nephron number and cause bladder dysfunction, which contribute to ongoing injury. Severe UTO can impair kidney growth in utero, and animal models of unilateral ureteral obstruction show that ischemia and oxidative stress cause proximal tubular cell death, with later development of interstitial fibrosis. Congenital obstructive nephropathy, therefore, results from combined developmental and obstructive kidney injury. Because of inadequacy of available biomarkers, criteria for surgical correction of upper tract obstruction are poorly established. Lower tract obstruction requires fetal or immediate postnatal intervention, and the rate of progression of CKD is highly variable. New biomarkers based on proteomics and determination of glomerular number by magnetic resonance imaging should improve future care. Angiotensin inhibitors have not been effective in slowing progression, although avoidance of nephrotoxins and timely treatment of hypertension are important. Because congenital UTO begins in fetal life, smooth transfer of care from perinatologist to pediatric and adult urology and nephrology teams should optimize quality of life and ultimate outcomes for these patients.


Assuntos
Hidronefrose/cirurgia , Insuficiência Renal Crônica/prevenção & controle , Obstrução Ureteral/cirurgia , Obstrução Uretral/cirurgia , Continuidade da Assistência ao Paciente , Progressão da Doença , Terapias Fetais , Hidronefrose/congênito , Hidronefrose/etiologia , Glomérulos Renais , Nefrologia , Pediatria , Perinatologia , Insuficiência Renal Crônica/etiologia , Transição para Assistência do Adulto , Obstrução Ureteral/complicações , Obstrução Ureteral/congênito , Obstrução Uretral/complicações , Obstrução Uretral/congênito , Anormalidades Urogenitais , Urologia
19.
J Urol ; 194(5): 1463-72, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25912494

RESUMO

PURPOSE: Urinary tract obstruction and reduced nephron number often occur together as a result of maldevelopment of the kidneys and the urinary tract. We determined the role of nephron number on adaptation of the remaining nephrons of mice subjected to neonatal partial unilateral ureteral obstruction followed through adulthood. MATERIALS AND METHODS: Wild-type and Os/+ mice (the latter with 50% fewer nephrons) underwent sham operation or partial unilateral ureteral obstruction in the first 2 days of life. Additional mice underwent release of unilateral ureteral obstruction at 7 days. All kidneys were harvested at 3 weeks (weaning) or 6 weeks (adulthood). Glomerular number and area, glomerulotubular junction integrity, proximal tubular volume fraction and interstitial fibrosis were measured by histomorphometry. RESULTS: In the obstructed kidney unilateral ureteral obstruction caused additional nephron loss in Os/+ but not in wild-type mice. Glomerular growth from 3 to 6 weeks was impaired by ipsilateral obstruction and not preserved by release in wild-type or Os/+ mice. Proximal tubular growth was impaired and interstitial collagen was increased by ipsilateral obstruction in all mice. These conditions were attenuated by release of unilateral ureteral obstruction in wild-type mice but were not restored in Os/+ mice. Unilateral ureteral obstruction increased interstitial collagen in the contralateral kidney while release of obstruction enhanced tubular growth and reduced interstitial collagen. CONCLUSIONS: Unilateral ureteral obstruction in early postnatal development impairs adaptation to reduced nephron number and induces additional nephron loss despite release of obstruction. Premature and low birth weight infants with congenital obstructive nephropathy are likely at increased risk for progression of chronic kidney disease.


Assuntos
Glomérulos Renais/patologia , Néfrons/patologia , Insuficiência Renal/etiologia , Obstrução Ureteral/complicações , Animais , Animais Recém-Nascidos , Contagem de Células , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Feminino , Masculino , Camundongos , Insuficiência Renal/patologia , Obstrução Ureteral/congênito , Obstrução Ureteral/patologia
20.
Am J Physiol Renal Physiol ; 308(10): F1155-66, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25694483

RESUMO

Cystinosis is an inherited disorder resulting from a mutation in the CTNS gene, causing progressive proximal tubular cell flattening, the so-called swan-neck lesion (SNL), and eventual renal failure. To determine the role of oxidative stress in cystinosis, histologic sections of kidneys from C57BL/6 Ctns(-/-) and wild-type mice were examined by immunohistochemistry and morphometry from 1 wk to 20 mo of age. Additional mice were treated from 1 to 6 mo with vehicle or mitoquinone (MitoQ), an antioxidant targeted to mitochondria. The leading edge of the SNL lost mitochondria and superoxide production, and became surrounded by a thickened tubular basement membrane. Progression of the SNL as determined by staining with lectin from Lotus tetragonolobus accelerated after 3 mo, but was delayed by treatment with MitoQ (38 ± 4% vs. 28 ± 1%, P < 0.01). Through 9 mo, glomeruli had retained renin staining and intact macula densa, whereas SNL expressed transgelin, an actin-binding protein, but neither kidney injury molecule-1 (KIM-1) nor cell death was observed. After 9 mo, clusters of proximal tubules exhibited localized oxidative stress (4-hydroxynonenal binding), expressed KIM-1, and underwent apoptosis, leading to the formation of atubular glomeruli and accumulation of interstitial collagen. We conclude that nephron integrity is initially maintained in the Ctns(-/-) mouse by adaptive flattening of cells of the SNL through loss of mitochondria, upregulation of transgelin, and thickened basement membrane. This adaptation ultimately fails in adulthood, with proximal tubular disruption, formation of atubular glomeruli, and renal failure. Antioxidant treatment targeted to mitochondria delays initiation of the SNL, and may provide therapeutic benefit in children with cystinosis.


Assuntos
Adaptação Fisiológica/fisiologia , Cistinose/patologia , Cistinose/fisiopatologia , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/fisiopatologia , Estresse Oxidativo/fisiologia , Sistemas de Transporte de Aminoácidos Neutros/deficiência , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Cistinose/genética , Modelos Animais de Doenças , Feminino , Receptor Celular 1 do Vírus da Hepatite A , Túbulos Renais Proximais/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mutação/genética , Compostos Organofosforados/farmacologia , Superóxidos/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA