Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
ACS Omega ; 9(14): 15935-15949, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617700

RESUMO

This paper reports the development of novel adsorbent materials using polyaniline (PANI) grafted onto Posidonia (POS) fibers, aimed at efficiently removing phenol red (PSP), an anionic dye, from aqueous solutions. The synthesis involved the copolymerization of aniline grafted on the surface of the POS and aniline monomer in solution, resulting in a chemically bound thin PANI layer on the POS bioadsorbent. Structural characteristics and binding affinities of these adsorbents with PANI under its emeraldine salt (POS@PANI-ES) or emeraldine base (POS@PANI-EB) forms are reported. The rapid adsorption kinetics observed are attributed to enhanced accessibility to PANI adsorption sites on the POS surface. The binding percentages of PSP to POS@PANI-ES and POS@PANI-EB materials were found to be 97 and 50%, respectively, after 15 min of contact time. The Langmuir model for localized adsorption sites and the Volmer model for nonlocalized adsorption as a mobile layer were fitted to the experimental adsorption isotherms of PSP to POS@PANI-EB and POS@PANI-ES, yielding the thermodynamic parameters of adsorption. The adsorption capacities of PSP on POS@PANI-EB and POS@PANI-ES were 37.8 and 71.5 µmol g-1, respectively. The adsorption of PSP remained above 80% at moderate salt concentrations of around 0.1 mol L-1; however, higher concentrations of NaCl and CaCl2 in PSP solutions significantly reduced the adsorption on POS@PANI-ES.

2.
Int J Pharm ; 642: 123164, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37356507

RESUMO

The nanoprecipitation of hydrogel nanoparticles by complex coacervation is investigated through a systematic study of the popular chitosan-polyphosphate pair of polyelectrolytes with opposite charges at pH 4. Polyphosphates of varying molar masses and electrical charges are investigated as alternatives to the commonly used tripolyphosphate, so as to assess the influence of the strength of electrostatic interactions on the fabrication possibility, the size of hydrogel particles, and their overall charge. Sodium hexametaphosphate and sodium polyphosphate allow the manufacture of such nanoparticles with either a positive or a negative charge, depending on the chitosan/polyphosphate ratio and the order of mixing. The classical way of mixing by pouring the polyphosphate solution into the chitosan solution yields microparticles. Inverting the order of mixing by pouring the chitosan solution into the polyphosphate solution allows the precipitation of negatively charged nanoparticles with diameters in the range 100-200 nm. Such charge inversion of the chitosan into negative is not possible with the common TPP. It was achieved using sodium hexametaphosphate and sodium polyphosphate having a larger negative charge. Charge inversion of chitosan allows an efficient encapsulation of positively charged proteins with an improved encapsulation efficiency than in the usual TPP-based coacervate. The encapsulation of the bovine serum albumin at pH 4 is given as a case study of a positively charged protein.


Assuntos
Quitosana , Nanopartículas , Tamanho da Partícula , Soroalbumina Bovina , Polifosfatos , Hidrogéis , Sódio
3.
Soft Matter ; 19(25): 4780-4793, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37318280

RESUMO

For addressing health issues and ecological concerns, the cosmetic and pharmaceutical industries are facing the challenge of designing emulsions without the use of surfactants. Emulsions stabilized by colloidal particles, known as Pickering emulsions, are promising in this matter. In this article, three different types of particles (neutral, anionic and cationic) are used alone or in binary mixtures as stabilizers of Pickering emulsions. The influence of the particles' charge on the emulsions' properties and the synergies between the different types of particles are studied. It is demonstrated that the kinetics of adsorption of the particles at the water/oil interface control the coverage and their organization at the droplet surface, rather than their interactions after adsorption. Binary mixtures of differently charged particles are a powerful way to control the droplet coverage and the particle loading in the emulsions. In particular, the combination of anionic and cationic particles led to smaller droplets and higher particle coverage of emulsion droplets.

4.
Int J Pharm ; 638: 122897, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37003313

RESUMO

The influence of hydrophilic surfactants acting on the membrane elasticity of liposomes on the skin absorption of vitamin C is investigated. The purpose of encapsulation inside cationic liposomes is to improve the skin delivery of vitamin C. The properties of elastic liposomes (ELs) are compared to that of conventional liposomes (CLs). ELs are formed by the addition of the "edge activator" Polysorbate 80 to the CLs composed of soybean lecithin, cationic lipid DOTAP (1,2-dioleoyl-3-trimethylammoniopropane chloride), and cholesterol. The liposomes are characterized by dynamic light scattering and electron microscopy. No toxicity is detected in human keratinocyte cells. Evidences of Polysorbate 80 incorporation into liposome bilayers and of the higher flexibility of ELs are given by isothermal titration calorimetry and pore edge tension measurements in giant unilamellar vesicles. The presence of a positive charge in the liposomal membrane increases the encapsulation efficacy by approximately 30% for both CLs and ELs. Skin absorption of vitamin C from CLs, ELs and a control aqueous solution measured in Franz cells shows a high delivery of vitamin C into each skin layer and the acceptor fluid from both liposome types. These results suggest that another mechanism drives skin diffusion, involving interactions between cationic lipids and vitamin C depending on the skin pH.


Assuntos
Lipossomos , Absorção Cutânea , Humanos , Lipossomos/química , Ácido Ascórbico , Polissorbatos , Administração Cutânea , Lipossomas Unilamelares , Vitaminas
5.
Nanotheranostics ; 7(2): 176-186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793350

RESUMO

Background: The objective of this study was to demonstrate that synchrotron K-edge subtraction tomography (SKES-CT) can simultaneously track therapeutic cells and their encapsulating carrier, in vivo, in a rat model of focal brain injury using a dual-contrast agent approach. The second objective was to determine if SKES-CT could be used as a reference method for spectral photon counting tomography (SPCCT). Methods: Phantoms containing different concentrations of gold and iodine nanoparticles (AuNPS/INPs) were imaged with SKES-CT and SPCCT to assess their performances. A pre-clinical study was performed in rats with focal cerebral injury which intracerebrally received AuNPs-labelled therapeutic cells encapsulated in a INPs-labelled scaffold. Animals were imaged in vivo with SKES-CT and back-to-back with SPCCT. Results: SKES-CT revealed to be reliable for quantification of gold and iodine, whether alone or mixed. In the preclinical model, SKES-CT showed that AuNPs remained at the site of cell injection, while INPs expanded within and/or along the lesion border, suggesting dissociation of both components in the first days post-administration. Compared to SKES-CT, SPCCT was able to correctly locate gold, but not completely located iodine. When SKES-CT was used as reference, SPCCT gold quantification appeared very accurate both in vitro and in vivo. Iodine quantification by SPCCT was also quite accurate, albeit less so than for gold. Conclusion: We here provide the proof-of-concept that SKES-CT is a novel method of choice for performing dual-contrast agent imaging in the context of brain regenerative therapy. SKES-CT may also serve as ground truth for emerging technologies such as multicolour clinical SPCCT.


Assuntos
Lesões Encefálicas , Iodo , Nanopartículas Metálicas , Ratos , Animais , Meios de Contraste , Ouro , Síncrotrons , Tomografia Computadorizada por Raios X/métodos , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/terapia
6.
Artigo em Inglês | MEDLINE | ID: mdl-35834580

RESUMO

A phospholipid-based liposome layer was used as an effective biomimetic membrane model to study the binding of the pH-dependent fusogenic peptide (E4-GGYC) from the influenza virus hemagglutinin HA2 subunit. To this end, a multiparameter surface plasmon resonance approach (MP-SPR) was used for monitoring peptide-liposome interactions at two pH values (4.5 and 8) by means of recording sensorgrams in real time without the need for labeling. Biotinylated liposomes were first immobilized as a monolayer onto the surface of an SPR gold chip coated with a streptavidin layer. Multiple sets of sensorgrams with different HA2 peptide concentrations were generated at both pHs. Dual-wavelength Fresnel layer modeling was applied to calculate the thickness (d) and the refractive index (n) of the liposome layer to monitor the change in its optical parameters upon interaction with the peptide. At acidic pH, the peptide, in its α helix form, entered the lipid bilayer of liposomes, inducing vesicle swelling and increasing membrane robustness. Conversely, a contraction of liposomes was observed at pH 8, associated with noninsertion of the peptide in the double layer of phospholipids. The equilibrium dissociation constant KD = 4.7 × 10-7 M of the peptide/liposome interaction at pH 4.5 was determined by fitting the "OneToOne" model to the experimental sensorgrams using Trace Drawer software. Our experimental approach showed that the HA2 peptide at a concentration up to 100 µM produced no disruption of liposomes at pH 4.5.

7.
Environ Sci Pollut Res Int ; 29(55): 83112-83125, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35761137

RESUMO

The presence of antibiotics as micro-contaminants in the water and aqueous environments is a health concern to humans and the ecosystem. Therefore, their elimination by adsorption to available and cheap materials in water treatment plants is a research topic of high relevance. The present paper reports on the adsorption behavior of oxytetracycline on a bio-adsorbent prepared from Posidonia oceanica; an abundant Mediterranean biomass. Characterization of the pretreated Posidonia biomaterial was achieved using several analyses such as Boehm acid-base titration method, pHPZC determination, and analysis techniques (FTIR, 13C CP-MAS NMR, optical microscopy, and TGA). The pHPZC occurred around pH 2.11. Posidonia biomaterial showed a fast and high uptake rate throughout the adsorption process, which is a definite advantage for analytical applications such as water decontamination. The experimental kinetic data fitted very rightly the pseudo-second-order kinetic model and the equilibrium uptake can adopt the bi-Langmuir isotherm model for all studied pH values which assumes adsorptions at the two localized sites. Maximum adsorption capacities of 11.8 mg∙g-1 and 4.4 mg∙g-1 for the two adsorption sites are reached at pH 6. The oxytetracycline adsorption process onto Posidonia bio-adsorbent is spontaneous (ΔadsG0 < 0), exothermic (ΔadsH0 < 0), and entropically favorable (ΔadsS0 > 0). The effect of pH on adsorption behavior and the thermodynamic parameters of adsorption are consistent with a possible origin of adsorption of oxytetracycline by means of hydrogen bonding interactions between surface hydroxyl and phenolic groups of the biomaterial and oxytetracycline. The proposed green and environmentally friendly biomaterial offers potential benefits as a bio-adsorbent in the remediation of aquatic environments contaminated by various organic materials.


Assuntos
Alismatales , Oxitetraciclina , Poluentes Químicos da Água , Purificação da Água , Humanos , Antibacterianos , Ecossistema , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Alismatales/química , Purificação da Água/métodos , Adsorção , Cinética , Termodinâmica , Materiais Biocompatíveis
8.
J Cosmet Dermatol ; 21(10): 4921-4926, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35238148

RESUMO

INTRODUCTION: Ascorbic acid (AA) is a powerful antioxidant capable of acting significantly both in the prevention and treatment of the skin aging process. One way to assess the in vivo efficacy of anti-aging treatments is by using the high-frequency ultrasound (HFUS) skin image analysis technique, a non-invasive approach that allows for a new level of evaluating the effectiveness of dermatological and cosmetic products. The aim of the present study was to assess the performance of a topical emulsion of liquid crystalline structures containing AA using the 50 MHz HFUS skin image analysis method. METHODS: Twenty-five healthy female participants between 35 and 60 years were included, all of whom randomly applied a placebo formulation and an AA-containing formulation to each forearm, once a day, for 30 days. HFUS measurements were performed before using the products (T0), 2 h later (T2h), and after 30 days of use (T30d). The analyzed parameters included total skin, dermal, and epidermal echogenicity; variation and mean thickness of total skin, the epidermis and dermis; and surface roughness. Statistical analyses were performed using the Friedman test, followed by Dunn's test for comparisons of multiple means (α = 0.05). RESULTS: A significant increase in total skin and dermal echogenicity was observed after topical AA application. CONCLUSION: Our findings suggest that collagen synthesis significantly increased after topical therapy with AA, which was responsible for the increment in dermal echogenicity. This study showed, through the HFUS technique, that the topical use of AA promoted dermal redensification after 30 days of application.


Assuntos
Cosméticos , Envelhecimento da Pele , Humanos , Feminino , Ácido Ascórbico/farmacologia , Pele/diagnóstico por imagem , Ultrassonografia
9.
J Med Chem ; 64(20): 15250-15261, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34661390

RESUMO

Dysfunctional elastin turnover plays a major role in the progression of atherosclerotic plaques. Failure of tropoelastin cross-linking into mature elastin leads to the accumulation of tropoelastin within the growing plaque, increasing its instability. Here we present Gd4-TESMA, an MRI contrast agent specifically designed for molecular imaging of tropoelastin within plaques. Gd4-TESMA is a tetrameric probe composed of a tropoelastin-binding peptide (the VVGS-peptide) conjugated with four Gd(III)-DOTA-monoamide chelates. It shows a relaxivity per molecule of 34.0 ± 0.8 mM-1 s-1 (20 MHz, 298 K, pH 7.2), a good binding affinity to tropoelastin (KD = 41 ± 12 µM), and a serum half-life longer than 2 h. Gd4-TESMA accumulates specifically in atherosclerotic plaques in the ApoE-/- murine model of plaque progression, with 2 h persistence of contrast enhancement. As compared to the monomeric counterpart (Gd-TESMA), the tetrameric Gd4-TESMA probe shows a clear advantage regarding both sensitivity and imaging time window, allowing for a better characterization of atherosclerotic plaques.


Assuntos
Aterosclerose/metabolismo , Meios de Contraste/química , Elastina/metabolismo , Gadolínio/química , Imageamento por Ressonância Magnética , Tropoelastina/análise , Animais , Meios de Contraste/síntese química , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estrutura Molecular , Ressonância de Plasmônio de Superfície
10.
Eur J Pharm Sci ; 166: 105985, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34455087

RESUMO

Non-ideal behaviour of mixed ions is disclosed in skin absorption experiments of mixed halide anions in excised pig skin. Comparison of skin absorption of pure and mixed ions shows enhanced penetration of chaotropic ions from mixed solutions. An experimental design and statistical analysis using a Scheffé {3,2} simplex-lattice allows investigating the full ternary diagram of anion mixtures of fluoride, bromide and iodide. Synergism in mixed absorption is observed for chaotropic bromide and iodide anions. A refined analysis highlighting specific interactions is made by considering the ratio of the absorbed amount to the ion activity instead of the directly measured absorbed amount. Statistical analysis discards non-significant effects and discloses specific interactions. Such interactions between bromide and iodide cause an absorption enhancement of their partner by a factor of 2-3 with respect to the case of ideal mixing. It is proposed that enhanced absorption from mixed solution involves the formation of neutral complex species of mixed bromide and iodide with endogenous magnesium or calcium inside stratum corneum.


Assuntos
Absorção Cutânea , Água , Animais , Ânions/metabolismo , Fluoretos/metabolismo , Pele/metabolismo , Soluções , Suínos , Água/metabolismo
11.
Langmuir ; 37(26): 7975-7985, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34170134

RESUMO

The interactions of mono-rhamnolipids (mono-RLs) with model membranes were investigated through a biomimetic approach using phospholipid-based liposomes immobilized on a gold substrate and also by the multiparametric surface plasmon resonance (MP-SPR) technique. Biotinylated liposomes were bound onto an SPR gold chip surface coated with a streptavidin layer. The resulting MP-SPR signal proved the efficient binding of the liposomes. The thickness of the liposome layer calculated by modeling the MP-SPR signal was about 80 nm, which matched the average diameter of the liposomes. The mono-RL binding to the film of the phospholipid liposomes was monitored by SPR and the morphological changes of the liposome layer were assessed by modeling the SPR signal. We demonstrated the capacity of the MP-SPR technique to characterize the different steps of the liposome architecture evolution, i.e., from a monolayer of phospholipid liposomes to a single phospholipid bilayer induced by the interaction with mono-RLs. Further washing treatment with Triton X-100 detergent left a monolayer of phospholipid on the surface. As a possible practical application, our method based on a biomimetic membrane coupled to an SPR measurement proved to be a robust and sensitive analytical tool for the detection of mono-RLs with a limit of detection of 2 µg mL-1.


Assuntos
Lipossomos , Ressonância de Plasmônio de Superfície , Decanoatos , Fosfolipídeos , Ramnose/análogos & derivados
12.
Int J Cosmet Sci ; 43(4): 432-445, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33964042

RESUMO

OBJECTIVE: Pickering emulsions are increasingly used in the pharmaceutical and cosmetic fields, especially for topical applications, since these systems require solid particles as emulsifiers instead of surfactants which are known to cause skin irritation. The solid inorganic nanoparticles (TiO2 and ZnO) used as UV filters in sunscreen formulations may also stabilize emulsion droplets, so that the utility of surfactants may be questioned. Surfactant-free sunscreen emulsions solely stabilized by such nanoparticles (NPs) have been studied. METHODS: The ability of these NPs to stabilize o/w emulsions containing a 'model' oil phase, the C12 -C15 alkylbenzoate, has been assessed. ZnO and hydrophilic silica-coated TiO2 NPs widely used in sunscreen products were used together with their mixtures. The emulsification efficiency, the control of droplet size and the stability of o/w Pickering emulsions solely stabilized by NPs were investigated. A ZnO/TiO2 NPs mixture characterized by a theoretical SPF of 45 was finally used as unique emulsifiers to develop a surfactant-free sunscreen emulsion. RESULTS: Stable Pickering emulsions containing 10 up to 60 wt% of C12 -C15 alkyl benzoate were formulated with 2 wt% ZnO in the aqueous phase. The droplet size was controlled by the solid NPs content with respect to oil and the emulsification process. Hydrophilic TiO2 NPs did not allow the stabilization of emulsions. The substitution of TiO2 for ZnO up to 60-70 wt% in a 20/80 o/w emulsion was successfully performed. Finally, a ZnO/TiO2 NP mixture was tested as unique emulsifier system for the formulation of a sunscreen cream. Despite a lower viscosity, the obtained Pickering emulsion was stable and exhibited a photoprotective effect similar to the corresponding surfactant-based sunscreen cream with an in vitro SPF of about 45. CONCLUSION: Surfactant-free Pickering emulsions can be stabilized by the UV-filter nanoparticles for the manufacture of sunscreen products.


OBJECTIFS: Les émulsions de Pickering sont de plus en plus utilisées dans les domaines pharmaceutique et cosmétique, notamment pour les applications topiques, car ces systèmes utilisent des particules solides comme émulsifiants au lieu de tensioactifs qui sont connus pour provoquer des irritations cutanées. Les nanoparticules inorganiques solides (TiO2 et ZnO) utilisées comme filtres UV dans les formulations d'écran solaire peuvent également stabiliser les gouttelettes d'émulsion, de sorte que l'utilité des tensioactifs peut être remise en question. Des émulsions de protection solaire sans tensioactifs et uniquement stabilisées par de telles nanoparticules (NP) ont été étudiées. MÉTHODES: La capacité de ces NP à stabiliser les émulsions H/E contenant une phase huileuse «modèle¼, le benzoate d'alkyle C12 -C15 , a été évaluée. Des NP de ZnO et de TiO2 couvert de silice hydrophile, que l'on trouve largement dans les produits de protection solaire, ont été utilisées séparément et en mélange. L'efficacité d'émulsification, le contrôle de la taille des gouttelettes et la stabilité des émulsions de Pickering H/E uniquement stabilisées par les NP ont été étudiés. Un mélange de NP ZnO/TiO2 caractérisé par un SPF théorique de 45 a finalement été utilisé comme émulsifiant unique pour développer une émulsion de protection solaire sans tensioactif. RÉSULTATS: Des émulsions de Pickering stables contenant 10 à 60% en poids de benzoate d'alkyle C12 -C15 ont été formulées avec 2% en poids de ZnO dans la phase aqueuse. La taille des gouttelettes était contrôlée par la teneur en NP solides par rapport à l'huile et le procédé d'émulsification. Les NP de TiO2 hydrophile n'ont pas permis la stabilisation des émulsions. La substitution des NP de TiO2 par du ZnO jusqu'à 60-70% en poids dans une émulsion 20/80 H/E a été réalisée avec succès. Enfin, un mélange de NP ZnO/TiO2 a été testé en tant que système émulsifiant unique pour la formulation d'une crème solaire. Malgré une viscosité plus faible, l'émulsion de Pickering obtenue était stable et présentait un effet photoprotecteur similaire à la crème solaire à base de tensioactif correspondante avec un SPF in vitro d'environ 45. CONCLUSION: Les émulsions Pickering sans tensioactifs peuvent être stabilisées par les nanoparticules de filtre UV pour la formulation de produits de protection solaire.


Assuntos
Emulsões , Creme para a Pele/química , Protetores Solares/química , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Tensoativos/química , Titânio/química , Óxido de Zinco/química
13.
J Control Release ; 333: 579-592, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33838210

RESUMO

In this work, nanocomposites that combine mucopenetrating and mucoadhesive properties in a single system are proposed as innovative strategy to increase drug residence time in the intestine following oral administration. To this aim, novel mucoadhesive chitosan (CH) sponges loaded with mucopenetrating nanoemulsions (NE) were developed via freeze-casting technique. The NE mucopenetration ability was determined studying the surface affinity and thermodynamic binding of the nanosystem with mucins. The ability of nanoparticles to penetrate across a preformed mucins layer was validated by 3D-time laps Confocal Laser Scanning Microscopy imaging. Microscopy observations (Scanning Electron Microscopy and Optical Microscopy) showed that NE participated in the structure of the sponge affecting its stability and in vitro release kinetics. When incubated with HCT 116 and Caco-2 cell lines, the NE proved to be cytocompatible over a wide concentration range. Finally, the in vivo biodistribution of the nanocomposite was evaluated after oral gavage in healthy mice. The intestinal retention of NE was highly enhanced when loaded in the sponge compared to the NE suspension. Overall, our results demonstrated that the developed nanocomposite sponge is a promising system for sustained drug intestinal delivery.


Assuntos
Quitosana , Nanocompostos , Nanopartículas , Administração Oral , Animais , Células CACO-2 , Sistemas de Liberação de Medicamentos , Humanos , Intestinos , Camundongos , Distribuição Tecidual
14.
Sensors (Basel) ; 21(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670860

RESUMO

Gadolinium is extensively used in pharmaceuticals and is very toxic, so its sensitive detection is mandatory. This work presents the elaboration of a gadolinium chemical sensor based on 2-methylpyridine-substituted cyclam thin films, deposited on gold electrodes, using electrochemical impedance spectroscopy (EIS). The 2-methylpyridine-substituted cyclam (bis-N-MPyC) was synthesized in three steps, including the protection of cyclam by the formation of its CH2-bridged aminal derivative; the product was characterized by liquid 1H and 13C NMR spectroscopy. Spin-coated thin films of bis-N-MPyC on gold wafers were characterized by means of infrared spectroscopy in ATR (Attenuated Total Reflectance) mode, contact angle measurements and atomic force microscopy. The impedimetric chemical sensor was studied in the presence of increasing concentrations of lanthanides (Gd3+, Eu3+, Tb3+, Dy3+). Nyquist plots were fitted with an equivalent electrical circuit including two RC circuits in series corresponding to the bis-N-MPyC film and its interface with the electrolyte. The main parameter that varies with gadolinium concentration is the resistance of the film/electrolyte interface (Rp), correlated to the rate of exchange between the proton and the lanthanide ion. Based on this parameter, the detection limit obtained is 35 pM. The bis-N-MPyC modified gold electrode was tested for the detection of gadolinium in spiked diluted negative urine control samples.


Assuntos
Técnicas Biossensoriais , Ouro , Espectroscopia Dielétrica , Eletrodos , Gadolínio , Compostos Heterocíclicos , Limite de Detecção , Picolinas
15.
Int J Pharm ; 592: 120092, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33212173

RESUMO

Emulsified systems are widely used for topical delivery with the aim of optimizing cutaneous absorption and offering a pleasant sensory. They also may provide a protection of the active molecule against oxidation and/or degradation. The oil phase of o/w emulsions may consist of liquid crystalline structures, especially lamellar structures which are similar to those found in the stratum corneum lipids. In the present work, o/w emulsions containing liquid crystals of mixed cetyl alcohol and Polysorbate 60 were developed for topical delivery of vitamin C, a potent antioxidant with several applications in the cosmetic and pharmaceutical fields. In addition to the well-documented lipid supplementation of the stratum corneum, the liquid crystal emulsions provide a significant chemical stabilization of vitamin C against its degradation. Emulsions were characterized by X-ray diffraction, polarized optical microscopy, and transmission electron microscopy. The stability of vitamin C in the formulations was evaluated upon storage in different conditions of temperature. The emulsions contain a complex colloidal structure, consisting of lamellar liquid crystalline (Lα) and crystalline lamellar gel (Lß) phases, that provide a very efficient protection of vitamin C against its degradation.


Assuntos
Cosméticos , Cristais Líquidos , Ácido Ascórbico , Emulsões , Absorção Cutânea
16.
Chemistry ; 27(6): 2175-2183, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33146917

RESUMO

A new way to freeze molecular imprints in a polymer material is reported. So far, molecular imprinted polymers (MIP) involve copolymerization of a functional monomer and large amounts of cross-linking agent, which keeps the template shape memory in rigid molecular imprints. MIP materials are prepared herein without cross-linking agent. Stiff chains of polyaniline grafted on a solid support as a brush-like material achieve the necessary rigidity. Differential adsorption to imprinted and non-imprinted materials provides evidence of molecular imprints. A correct adsorption isotherm for mobile adsorbed layers (Volmer isotherm) is introduced instead of the popular but inadequate Langmuir isotherm. Non-selective adsorption is entropic, whereas adsorption to molecular imprints has an enthalpic contribution coming from specific interactions. Fast adsorption kinetics are a definite benefit with regards to applications such as chromatographic separations and chemical sensors.

17.
Langmuir ; 36(45): 13545-13554, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33147976

RESUMO

Fluorination of the TiO2 surface has been often reported as a tool to increase the photocatalytic efficiency due to the beneficial effects in terms of production of oxidizing radicals. Moreover, it is shown that the unique amphiphilic properties of the fluorinated TiO2 (TiO2-F) surface allow one to use this material as a stabilizer for the formulation of Pickering emulsions of poorly soluble pollutants such as nitrobenzene (NB) in water. The emulsions have been characterized in terms of size of the droplets, type of emulsion, possibility of phase inversion, contact angle measurements, and optical microscopy. The emulsified system presents micrometer-sized droplets of pollutant surrounded by the TiO2-F photocatalyst. Consequently, the system can be considered to be composed of microreactors for the degradation of the pollutant, which maximize the contact area between the photocatalyst and substrate. The enhanced photocatalytic activity of TiO2-F was confirmed in the present paper as the apparent rate constants of NB photodegradation were 16 × 10-3 and 12 × 10-3 min-1 for fluorinated and bare TiO2, respectively. At NB concentrations largely exceeding its solubility, the rate constant was 0.04 × 10-3 min-1 in the presence of both TiO2 and TiO2-F. However, unlike TiO2, TiO2-F stabilized NB/water emulsions and, under these conditions, the efficiency of NB photocatalytic degradation in the emulsified system was ca. 18 times higher than in the nonemulsified one. This result is relevant also in terms of practical applications because it opens the route to one-pot treatments of biphasic polluted streams without the need of preliminary physical separation treatments.

18.
Int J Pharm ; 591: 119991, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33091552

RESUMO

Skin constitutes a barrier protecting the organism against physical and chemical factors. Therefore, it is constantly exposed to the xenobiotics, including inorganic ions that are ubiquitous in the environment. Some of them play important roles in homeostasis and regulatory functions of the body, also in the skin, while others can be considered dangerous. Many authors have shown that inorganic ions could penetrate inside the skin and possibly induce local effects. In this review, we give an account of the current knowledge on the effects of skin exposure to inorganic ions. Beneficial effects on skin conditions related to the use of thermal spring waters are discussed together with the application of aluminium in underarm hygiene products and silver salts in treatment of difficult wounds. Finally, the potential consequences of dermal exposure to topical sensitizers and harmful heavy ions including radionuclides are discussed.


Assuntos
Absorção Cutânea , Pele , Íons/metabolismo , Prata/metabolismo , Pele/metabolismo
19.
Biomater Sci ; 8(20): 5715-5728, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32935704

RESUMO

Suspensions of iodinated polymer nanoparticles are evaluated as contrast agent for Computed Tomography (CT) and Spectral Photon Counting Computed Tomography (SPCCT). Iodine containing moieties are grafted to poly(vinyl alcohol) by means of a covalent ester bond up to high degree of substitution of 0.77 providing high iodine content of 71 wt%. Polymer nanoparticles of 150 nm diameter stabilized by the block copolymer poly(caprolactone)-b-poly(ethylene glycol) are highly stable in water and human serum. High coverage of nanoparticles by PEG chains in a dense brush conformation (0.30 molecules·nm-2) provides resistance against fast elimination by mononuclear phagocytes system. Iodine concentration is increased up to 100 mg(i)·mL-1 by a centrifugation/redispersion step, which sets radiopacity of the contrast agent in the right range for imaging cardiovascular system and biodistribution. SPCCT 'Material Decomposition' and 'K-edge reconstruction' methods allow accurate quantification of iodine, as well as specific discrimination of iodine and gadolinium in mixed phantom samples. Intravenous injection of iodinated polymer nanoparticles to rats provides a clear visualization of the cardiovascular system over several hours followed by progressive accumulation in liver and spleen. This material is a 'blood pool' contrast agent with very long residence time in the blood stream.


Assuntos
Meios de Contraste , Nanopartículas , Animais , Polímeros , Ratos , Distribuição Tecidual , Tomografia Computadorizada por Raios X
20.
Nanotheranostics ; 4(3): 129-141, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32483519

RESUMO

Rationale & aim: Various types of cell therapies are currently under investigation for the treatment of ischemic stroke patients. To bridge the gap between cell administration and therapeutic outcome, there is a need for non-invasive monitoring of these innovative therapeutic approaches. Spectral photon counting computed tomography (SPCCT) is a new imaging modality that may be suitable for cell tracking. SPCCT is the next generation of clinical CT that allows the selective visualization and quantification of multiple contrast agents. The aims of this study are: (i) to demonstrate the feasibility of using SPCCT to longitudinally monitor and quantify therapeutic cells, i.e. bone marrow-derived M2-polarized macrophages transplanted in rats with brain damage; and (ii) to evaluate the potential of this approach to discriminate M2-polarized macrophages from their encapsulating scaffold. Methods: Twenty one rats received an intralesional transplantation of bone marrow-derived M2-polarized macrophages. In the first set of experiments, cells were labeled with gold nanoparticles and tracked for up to two weeks post-injection in a monocolor study via gold K-edge imaging. In the second set of experiments, the same protocol was repeated for a bicolor study, in which the labeled cells are embedded in iodine nanoparticle-labeled scaffold. The amount of gold in the brain was longitudinally quantified using gold K-edge images reconstructed from SPCCT acquisition. Animals were sacrificed at different time points post-injection, and ICP-OES was used to validate the accuracy of gold quantification from SPCCT imaging. Results: The feasibility of therapeutic cell tracking was successfully demonstrated in brain-damaged rats with SPCCT imaging. The imaging modality enabled cell monitoring for up to 2 weeks post-injection, in a specific and quantitative manner. Differentiation of labeled cells and their embedding scaffold was also feasible with SPCCT imaging, with a detection limit as low as 5,000 cells in a voxel of 250 × 250 × 250 µm in dimension in vivo. Conclusion: Multicolor SPCCT is an innovative translational imaging tool that allows monitoring and quantification of therapeutic cells and their encapsulating scaffold transplanted in the damaged rat brain.


Assuntos
Lesões Encefálicas , Encéfalo , Nanopartículas Metálicas/química , Tomografia Computadorizada por Raios X/métodos , Animais , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Rastreamento de Células , Estudos de Viabilidade , Masculino , Fótons , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA