Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Transl Med ; 15(694): eade5855, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37134151

RESUMO

Prostate cancers are largely unresponsive to immune checkpoint inhibitors (ICIs), and there is strong evidence that programmed death-ligand 1 (PD-L1) expression itself must be inhibited to activate antitumor immunity. Here, we report that neuropilin-2 (NRP2), which functions as a vascular endothelial growth factor (VEGF) receptor on tumor cells, is an attractive target to activate antitumor immunity in prostate cancer because VEGF-NRP2 signaling sustains PD-L1 expression. NRP2 depletion increased T cell activation in vitro. In a syngeneic model of prostate cancer that is resistant to ICI, inhibition of the binding of VEGF to NRP2 using a mouse-specific anti-NRP2 monoclonal antibody (mAb) resulted in necrosis and tumor regression compared with both an anti-PD-L1 mAb and control immunoglobulin G. This therapy also decreased tumor PD-L1 expression and increased immune cell infiltration. We observed that the NRP2, VEGFA, and VEGFC genes are amplified in metastatic castration-resistant and neuroendocrine prostate cancer. We also found that individuals with NRP2High PD-L1High metastatic tumors had lower androgen receptor expression and higher neuroendocrine prostate cancer scores than other individuals with prostate cancer. In organoids derived from patients with neuroendocrine prostate cancer, therapeutic inhibition of VEGF binding to NRP2 using a high-affinity humanized mAb suitable for clinical use also diminished PD-L1 expression and caused a substantial increase in immune-mediated tumor cell killing, consistent with the animal studies. These findings provide justification for the initiation of clinical trials using this function-blocking NRP2 mAb in prostate cancer, especially for patients with aggressive disease.


Assuntos
Neoplasias da Próstata , Fator A de Crescimento do Endotélio Vascular , Masculino , Animais , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neuropilina-2/genética , Neuropilina-2/metabolismo , Transdução de Sinais , Antígeno B7-H1/genética , Neoplasias da Próstata/metabolismo
2.
Sci Adv ; 8(1): eabj9513, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34995107

RESUMO

We pursued the hypothesis that specific glycans can be used to distinguish breast cancer stem cells (CSCs) and influence their function. Comparison of CSCs and non-CSCs from multiple breast cancer models revealed that CSCs are distinguished by expression of α2,3 sialylated core2 O-linked glycans. We identified a lectin, SLBR-N, which binds to O-linked α2,3 sialic acids, that was able to enrich for CSCs in vitro and in vivo. This O-glycan is expressed on CD44 and promotes its interaction with hyaluronic acid, facilitating CD44 signaling and CSC properties. In contrast, FUT3, which contributes to sialyl Lewis X (sLeX) production, is preferentially expressed in the non-CSC population, and it antagonizes CSC function. Collectively, our data indicate that SLBR-N can be more efficient at enriching for CSCs than CD44 itself because its use avoids the issues of CD44 splicing and glycan status. These data also reveal how differential glycosylation influences CSC fate.

3.
EMBO Mol Med ; 13(8): e13792, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34223704

RESUMO

Understanding how cancer cells resist ferroptosis is a significant problem that impacts ongoing efforts to stimulate ferroptosis as a therapeutic strategy. We reported that prominin2 is induced by ferroptotic stimuli and functions to resist ferroptotic death. Although this finding has significant implications for therapy, specific prominin2 inhibitors are not available. We rationalized that the mechanism by which prominin2 expression is induced by ferroptotic stress could be targeted, expanding the range of options to overcome ferroptosis resistance. Here, we show that that 4-hydroxynonenal (4HNE), a specific lipid metabolite formed from the products of lipid peroxidation stimulates PROM2 transcription by a mechanism that involves p38 MAP kinase-mediated activation of HSF1 and HSF1-dependent transcription of PROM2. HSF1 inhibitors sensitize a wide variety of resistant cancer cells to drugs that induce ferroptosis. Importantly, the combination of a ferroptosis-inducing drug and an HSF1 inhibitor causes the cytostasis of established tumors in mice, although neither treatment alone is effective. These data reveal a novel approach for the therapeutic induction of ferroptosis in cancer.


Assuntos
Ferroptose , Neoplasias , Animais , Peroxidação de Lipídeos , Camundongos
4.
STAR Protoc ; 2(1): 100303, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33554138

RESUMO

Extracellular vesicles (EVs) play key roles in transporting key molecular constituents as cargo for extracellular trafficking. While several approaches have been developed to extract EVs from mammalian cells, the specific method of EV isolation can have a profound effect on membrane integrity and yield. Here, we describe a step-by-step procedure to separate EVs from adherent epithelial cells using differential ultracentrifugation. Separated EVs can be further analyzed by immunoblotting, mass spectrometry, and transmission electron microscopy to derive EV yield and morphology. For complete details on the use and execution of this protocol, please refer to Brown et al. (2019).


Assuntos
Separação Celular/métodos , Vesículas Extracelulares/fisiologia , Ultracentrifugação/métodos , Transporte Biológico/fisiologia , Comunicação Celular/fisiologia , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Citometria de Fluxo/métodos , Humanos , Testes Imunológicos/métodos , Microscopia Eletrônica de Transmissão/métodos , Manejo de Espécimes/métodos
5.
Dev Cell ; 51(5): 575-586.e4, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31735663

RESUMO

Ferroptosis, regulated cell death characterized by the iron-dependent accumulation of lethal lipid reactive oxygen species, contributes to tissue homeostasis and numerous pathologies, and it may be exploited for therapy. Cells differ in their sensitivity to ferroptosis, however, and a key challenge is to understand mechanisms that contribute to resistance. Using RNA-seq to identify genes that contribute to ferroptosis resistance, we discovered that pro-ferroptotic stimuli, including inhibition of the lipid hydroperoxidase GPX4 and detachment from the extracellular matrix, induce expression of prominin2, a pentaspanin protein implicated in regulation of lipid dynamics. Prominin2 facilitates ferroptosis resistance in mammary epithelial and breast carcinoma cells. Mechanistically, prominin2 promotes the formation of ferritin-containing multivesicular bodies (MVBs) and exosomes that transport iron out of the cell, inhibiting ferroptosis. These findings reveal that ferroptosis resistance can be driven by a prominin2-MVB-exosome-ferritin pathway and have broad implications for iron homeostasis, intracellular trafficking, and cancer.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma/metabolismo , Ferroptose , Ferro/metabolismo , Glicoproteínas de Membrana/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Matriz Extracelular/metabolismo , Feminino , Ferritinas/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Corpos Multivesiculares/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
6.
Cell Metab ; 19(4): 605-17, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24703693

RESUMO

We report the identification and characterization of a five-carbon protein posttranslational modification (PTM) called lysine glutarylation (Kglu). This protein modification was detected by immunoblot and mass spectrometry (MS), and then comprehensively validated by chemical and biochemical methods. We demonstrated that the previously annotated deacetylase, sirtuin 5 (SIRT5), is a lysine deglutarylase. Proteome-wide analysis identified 683 Kglu sites in 191 proteins and showed that Kglu is highly enriched on metabolic enzymes and mitochondrial proteins. We validated carbamoyl phosphate synthase 1 (CPS1), the rate-limiting enzyme in urea cycle, as a glutarylated protein and demonstrated that CPS1 is targeted by SIRT5 for deglutarylation. We further showed that glutarylation suppresses CPS1 enzymatic activity in cell lines, mice, and a model of glutaric acidemia type I disease, the last of which has elevated glutaric acid and glutaryl-CoA. This study expands the landscape of lysine acyl modifications and increases our understanding of the deacylase SIRT5.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Lisina/metabolismo , Modelos Biológicos , Processamento de Proteína Pós-Traducional/fisiologia , Sirtuínas/metabolismo , Acil Coenzima A/química , Acil Coenzima A/metabolismo , Animais , Immunoblotting , Lisina/química , Espectrometria de Massas , Camundongos , Estrutura Molecular , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA