RESUMO
The epidermal growth factor receptor, EGFR, is frequently activated in lung cancer and glioblastoma by genomic alterations including missense mutations. The different mutation spectra in these diseases are reflected in divergent responses to EGFR inhibition: significant patient benefit in lung cancer, but limited in glioblastoma. Here, we report a comprehensive mutational analysis of EGFR function. We perform saturation mutagenesis of EGFR and assess function of ~22,500 variants in a human EGFR-dependent lung cancer cell line. This approach reveals enrichment of erlotinib-insensitive variants of known and unknown significance in the dimerization, transmembrane, and kinase domains. Multiple EGFR extracellular domain variants, not associated with approved targeted therapies, are sensitive to afatinib and dacomitinib in vitro. Two glioblastoma patients with somatic EGFR G598V dimerization domain mutations show responses to dacomitinib treatment followed by within-pathway resistance mutation in one case. In summary, this comprehensive screen expands the landscape of functional EGFR variants and suggests broader clinical investigation of EGFR inhibition for cancers harboring extracellular domain mutations.
Assuntos
Glioblastoma , Neoplasias Pulmonares , Humanos , Glioblastoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , MutaçãoRESUMO
PURPOSE: There are no effective medical therapies for patients with meningioma who progress beyond surgical and radiotherapeutic interventions. Somatostatin receptor type 2 (SSTR2) represents a promising treatment target in meningiomas. In this multicenter, single-arm phase II clinical study (NCT03971461), the SSTR2-targeting radiopharmaceutical 177Lu-DOTATATE is evaluated for its feasibility, safety, and therapeutic efficacy in these patients. PATIENTS AND METHODS: Adult patients with progressive intracranial meningiomas received 177Lu-DOTATATE at a dose of 7.4 GBq (200 mCi) every eight weeks for four cycles. 68Ga-DOTATATE PET-MRI was performed before and six months after the start of the treatment. The primary endpoint was progression-free survival (PFS) at 6 months (PFS-6). Secondary endpoints were safety and tolerability, overall survival (OS) at 12 months (OS-12), median PFS, and median OS. RESULTS: Fourteen patients (female = 11, male = 3) with progressive meningiomas (WHO 1 = 3, 2 = 10, 3 = 1) were enrolled. Median age was 63.1 (range 49.7-78) years. All patients previously underwent tumor resection and at least one course of radiation. Treatment with 177Lu-DOTATATE was well tolerated. Seven patients (50%) achieved PFS-6. Best radiographic response by modified Macdonald criteria was stable disease (SD) in all seven patients. A >25% reduction in 68Ga-DOTATATE uptake (PET) was observed in five meningiomas and two patients. In one lesion, this corresponded to >50% reduction in bidirectional tumor measurements (MRI). CONCLUSIONS: Treatment with 177Lu-DOTATATE was well tolerated. The predefined PFS-6 threshold was met in this interim analysis, thereby allowing this multicenter clinical trial to continue enrollment. 68Ga-DOTATATE PET may be a useful imaging biomarker to assess therapeutic outcome in patients with meningioma.
Assuntos
Neoplasias Meníngeas , Meningioma , Tumores Neuroendócrinos , Octreotida/análogos & derivados , Compostos Organometálicos , Receptores de Somatostatina , Adulto , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Meningioma/diagnóstico por imagem , Meningioma/radioterapia , Meningioma/tratamento farmacológico , Compostos Radiofarmacêuticos , Compostos Organometálicos/efeitos adversos , Tomografia por Emissão de Pósitrons/métodos , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/radioterapia , Neoplasias Meníngeas/tratamento farmacológico , Biomarcadores , Tumores Neuroendócrinos/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia ComputadorizadaRESUMO
Background: Glioblastoma (GBM) is a highly aggressive and invasive brain tumor associated with high patient mortality. A large fraction of GBM tumors have been identified as epidermal growth factor receptor (EGFR) amplified and ~50% also are EGFRvIII mutant positive. In a previously reported multicenter phase II study, we have described the response of recurrent GBM (rGBM) patients to dacomitinib, an EGFR tyrosine kinase inhibitor (TKI). As a continuation of that report, we leverage the tumor cargo-encapsulating extracellular vesicles (EVs) and explore their genetic composition as carriers of tumor biomarker. Methods: Serum samples were longitudinally collected from EGFR-amplified rGBM patients who clinically benefitted from dacomitinib therapy (responders) and those who did not (nonresponders), as well as from a healthy cohort of individuals. The serum EV transcriptome was evaluated to map the RNA biotype distribution and distinguish GBM disease. Results: Using long RNA sequencing, we show enriched detection of over 10 000 coding RNAs from serum EVs. The EV transcriptome yielded a unique signature that facilitates differentiation of GBM patients from healthy donors. Further analysis revealed genetic enrichment that enables stratification of responders from nonresponders prior to dacomitinib treatment as well as following administration. Conclusion: This study demonstrates that genetic composition analysis of serum EVs may aid in therapeutic stratification to identify patients with dacomitinib-responsive GBM.
RESUMO
Advances in treatment of oligodendroglioma represent arguably the most significant recent development in the treatment of brain tumors, with multiple clinical trials demonstrating that median survival is approximately doubled in patients with World Health Organization grade II and III 1p/19q codeleted gliomas (ie, oligodendrogliomas) treated with procarbazine, lomustine, vincristine chemotherapy and radiation vs radiation alone. However, chemoradiotherapy itself is not without morbidity, including both short-term toxicities primarily related to chemotherapy and longer-term cognitive issues likely due to radiation. Patients and physicians both desire maximally effective therapy with minimal toxicity, and it remains unclear whether some patients with macroscopic residual disease after surgery can safely delay therapy, to avoid or delay toxicity, while simultaneously preserving the full benefits of treatment. In this article, experts in the field discuss the rationale for the approaches of up-front treatment with chemoradiotherapy and initial observation, respectively.
Assuntos
Glioblastoma , Glioma , Diagnóstico por Imagem , Testes Diagnósticos de Rotina , Glioma/genética , Humanos , PrognósticoRESUMO
OBJECTIVE: To implement an automated quality assurance tool to prospectively track discrepancies in musculoskeletal (MSK) exams submitted for second-opinion radiology interpretation at a tertiary center. METHODS: From 2013 to 2020, a standardized template was included in re-interpretation MSK reports, and a concordance assessment compared with primary interpretation was assigned. Analysis of standardized template implementation and discordance rates was performed. Of the re-interpretations that demonstrated likely clinically relevant discordance, a sample was randomly selected and the EMR was reviewed to evaluate the impact on patient care and change in medical management. RESULTS: A total of 1052 re-interpretations were identified using the standardized template. Services with higher requests for second-opinion interpretation were oncology (n = 351, 33%) and orthopedic surgery (n = 255, 24%). Overall utilization rate of the template was 65% with marked decreased during the last year (22% rate). In comparison to the primary report, there was a 30% discordance rate (n = 309) with 18% (n = 184) classified as likely clinically relevant. From the subset of discrepancies that could be clinically relevant, there was a change in management in 63% of the cases (19/30) with the re-interpretation ultimately proving correct in 80% of the cases (24/30). CONCLUSION: Implementation of a quality assurance tool embedded in the radiology workflow of second-opinion interpretations can facilitate the analysis of patient care impact; however, stricter implementation is necessary. Oncologic studies were the most common indication for re-interpretations. Although the primary and second interpretations in the majority of cases were in agreement, subspecialty MSK radiology interpretation was shown to be more accurate than primary interpretations and impacted clinical management in cases of discrepancy.
Assuntos
Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Humanos , Variações Dependentes do Observador , Encaminhamento e Consulta , Estudos RetrospectivosRESUMO
Primary central nervous system lymphoma (PCNSL) is an isolated type of lymphoma of the central nervous system and has a dismal prognosis despite intensive chemotherapy. Recent genomic analyses have identified highly recurrent mutations of MYD88 and CD79B in immunocompetent PCNSL, whereas LMP1 activation is commonly observed in Epstein-Barr virus (EBV)-positive PCNSL. However, a lack of clinically representative preclinical models has hampered our understanding of the pathogenic mechanisms by which genetic aberrations drive PCNSL disease phenotypes. Here, we establish a panel of 12 orthotopic, patient-derived xenograft (PDX) models from both immunocompetent and EBV-positive PCNSL and secondary CNSL biopsy specimens. PDXs faithfully retained their phenotypic, metabolic, and genetic features, with 100% concordance of MYD88 and CD79B mutations present in PCNSL in immunocompetent patients. These models revealed a convergent functional dependency upon a deregulated RelA/p65-hexokinase 2 signaling axis, codriven by either mutated MYD88/CD79B or LMP1 with Pin1 overactivation in immunocompetent PCNSL and EBV-positive PCNSL, respectively. Notably, distinct molecular alterations used by immunocompetent and EBV-positive PCNSL converged to deregulate RelA/p65 expression and to drive glycolysis, which is critical for intracerebral tumor progression and FDG-PET imaging characteristics. Genetic and pharmacologic inhibition of this key signaling axis potently suppressed PCNSL growth in vitro and in vivo. These patient-derived models offer a platform for predicting clinical chemotherapeutics efficacy and provide critical insights into PCNSL pathogenic mechanisms, accelerating therapeutic discovery for this aggressive disease. SIGNIFICANCE: A set of clinically relevant CNSL xenografts identifies a hyperactive RelA/p65-hexokinase 2 signaling axis as a driver of progression and potential therapeutic target for treatment and provides a foundational preclinical platform. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/23/5330/F1.large.jpg.
Assuntos
Neoplasias do Sistema Nervoso Central/patologia , Hexoquinase/metabolismo , Linfoma/patologia , Fator de Transcrição RelA/metabolismo , Animais , Antígenos CD79/genética , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/mortalidade , Feminino , Glicólise , Hexoquinase/genética , Humanos , Linfoma/tratamento farmacológico , Linfoma/metabolismo , Linfoma/mortalidade , Camundongos SCID , Mutação , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Transdução de Sinais , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
PURPOSE: Despite the high frequency of EGFR genetic alterations in glioblastoma (GBM), EGFR-targeted therapies have not had success in this disease. To improve the likelihood of efficacy, we targeted adult patients with recurrent GBM enriched for EGFR gene amplification, which occurs in approximately half of GBM, with dacomitinib, a second-generation, irreversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that penetrates the blood-brain barrier, in a multicenter phase II trial. PATIENTS AND METHODS: We retrospectively explored whether previously described EGFR extracellular domain (ECD)-sensitizing mutations in the context of EGFR gene amplification could predict response to dacomitinib, and in a predefined subset of patients, we measured post-treatment intratumoral dacomitinib levels to verify tumor penetration. RESULTS: We found that dacomitinib effectively penetrates contrast-enhancing GBM tumors. Among all 56 treated patients, 8 (14.3%) had a clinical benefit as defined by a duration of treatment of at least 6 months, of whom 5 (8.9%) remained progression free for at least 1 year. Presence of EGFRvIII or EGFR ECD missense mutation was not associated with clinical benefit. We evaluated the pretreatment transcriptome in circulating extracellular vesicles (EVs) by RNA sequencing in a subset of patients and identified a signature that distinguished patients who had durable benefit versus those with rapid progression. CONCLUSION: While dacomitinib was not effective in most patients with EGFR-amplified GBM, a subset experienced a durable, clinically meaningful benefit. Moreover, EGFRvIII and EGFR ECD mutation status in archival tumors did not predict clinical benefit. RNA signatures in circulating EVs may warrant investigation as biomarkers of dacomitinib efficacy in GBM.
RESUMO
Programmed cell death protein-1 (PD-1) checkpoint immunotherapy efficacy remains unpredictable in glioblastoma (GBM) patients due to the genetic heterogeneity and immunosuppressive tumor microenvironments. Here, we report a microfluidics-based, patient-specific 'GBM-on-a-Chip' microphysiological system to dissect the heterogeneity of immunosuppressive tumor microenvironments and optimize anti-PD-1 immunotherapy for different GBM subtypes. Our clinical and experimental analyses demonstrated that molecularly distinct GBM subtypes have distinct epigenetic and immune signatures that may lead to different immunosuppressive mechanisms. The real-time analysis in GBM-on-a-Chip showed that mesenchymal GBM niche attracted low number of allogeneic CD154+CD8+ T-cells but abundant CD163+ tumor-associated macrophages (TAMs), and expressed elevated PD-1/PD-L1 immune checkpoints and TGF-ß1, IL-10, and CSF-1 cytokines compared to proneural GBM. To enhance PD-1 inhibitor nivolumab efficacy, we co-administered a CSF-1R inhibitor BLZ945 to ablate CD163+ M2-TAMs and strengthened CD154+CD8+ T-cell functionality and GBM apoptosis on-chip. Our ex vivo patient-specific GBM-on-a-Chip provides an avenue for a personalized screening of immunotherapies for GBM patients.
Assuntos
Glioblastoma/terapia , Imunoterapia/instrumentação , Dispositivos Lab-On-A-Chip , Receptor de Morte Celular Programada 1/metabolismo , Microambiente Tumoral/imunologiaRESUMO
BACKGROUND: Glioma is a family of primary brain malignancies with limited treatment options and in need of novel therapies. We previously demonstrated that the adhesion G protein-coupled receptor GPR133 (ADGRD1) is necessary for tumor growth in adult glioblastoma, the most advanced malignancy within the glioma family. However, the expression pattern of GPR133 in other types of adult glioma is unknown. METHODS: We used immunohistochemistry in tumor specimens and non-neoplastic cadaveric brain tissue to profile GPR133 expression in adult gliomas. RESULTS: We show that GPR133 expression increases as a function of WHO grade and peaks in glioblastoma, where all tumors ubiquitously express it. Importantly, GPR133 is expressed within the tumor bulk, as well as in the brain-infiltrating tumor margin. Furthermore, GPR133 is expressed in both isocitrate dehydrogenase (IDH) wild-type and mutant gliomas, albeit at higher levels in IDH wild-type tumors. CONCLUSION: The fact that GPR133 is absent from non-neoplastic brain tissue but de novo expressed in glioma suggests that it may be exploited therapeutically.
RESUMO
AbstractThe T2-FLAIR (fluid attenuated inversion recovery) mismatch sign is an easily detectable imaging sign on routine clinical MRI studies that suggests diagnosis of isocitrate dehydrogenase (IDH)-mutant 1p/19q non-codeleted gliomas. Multiple independent studies show that the T2-FLAIR mismatch sign has near-perfect specificity, but low sensitivity for diagnosing IDH-mutant astrocytomas. Thus, the T2-FLAIR mismatch sign represents a non-invasive radiogenomic diagnostic finding with potential clinical impact. Recently, false positive cases have been reported, many related to variable application of the sign's imaging criteria and differences in image acquisition, as well as to differences in the included patient populations. Here we summarize the imaging criteria for the T2-FLAIR mismatch sign, review similarities and differences between the multiple validation studies, outline strategies to optimize its clinical use, and discuss potential opportunities to refine imaging criteria in order to maximize its impact in glioma diagnostics.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Isocitrato Desidrogenase/genética , Astrocitoma/diagnóstico por imagem , Astrocitoma/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Humanos , Imageamento por Ressonância Magnética , Mutação , Estudos RetrospectivosRESUMO
IDH1/2 mutations are early drivers present in diverse human cancer types arising in various tissue sites. IDH1/2 mutation is known to induce a global hypermethylator phenotype. However, the effects on DNA methylation across IDH mutant cancers and functionally different genome regions, remain unknown. We analyzed DNA methylation data from IDH1/2 mutant acute myeloid leukemia, oligodendroglioma, astrocytoma, solid papillary breast carcinoma with reverse polarity, sinonasal undifferentiated carcinoma and cholangiocarcinoma, which clustered by their embryonal origin. Hypermethylated common probes affect predominantly gene bodies while promoters in IDH1/2 mutant cancers remain unmethylated. Enhancers showed global hypermethylation, however commonly hypomethylated enhancers were associated with tissue differentiation and cell fate determination. We demonstrate that some chromosomes, chromosomal arms and chromosomal regions are more affected by IDH1/2 mutations while others remain resistant to IDH1/2 mutation induced methylation changes. Therefore IDH1/2 mutations have different methylation effect on different parts of the genome, which may be regulated by different mechanisms.
Assuntos
Metilação de DNA , Isocitrato Desidrogenase/genética , Mutação , Neoplasias/genética , Cromossomos Humanos/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Elementos Facilitadores Genéticos , Epigênese Genética , Humanos , Regiões Promotoras GenéticasRESUMO
BACKGROUND: H3 K27M-mutant diffuse midline glioma is a fatal malignancy with no proven medical therapies. The entity predominantly occurs in children and young adults. ONC201 is a small molecule selective antagonist of dopamine receptor D2/3 (DRD2/3) with an exceptional safety profile. Following up on a durable response in the first H3 K27M-mutant diffuse midline glioma patient who received ONC201 (NCT02525692), an expanded access program was initiated. METHODS: Patients with H3 K27M-mutant gliomas who received at least prior radiation were eligible. Patients with leptomeningeal spread were excluded. All patients received open-label ONC201 orally once every week. Safety, radiographic assessments, and overall survival were regularly assessed at least every 8 weeks by investigators. As of August 2018, a total of 18 patients with H3 K27M-mutant diffuse midline glioma or DIPG were enrolled to single patient expanded access ONC201 protocols. Among the 18 patients: seven adult (> 20 years old) and seven pediatric (< 20 years old) patients initiated ONC201 with recurrent disease and four pediatric patients initiated ONC201 following radiation, but prior to disease recurrence. FINDINGS: Among the 14 patients with recurrent disease prior to initiation of ONC201, median progression-free survival is 14 weeks and median overall survival is 17 weeks. Three adults among the 14 recurrent patients remain on treatment progression-free with a median follow up of 49.6 (range 41-76.1) weeks. Among the 4 pediatric patients who initiated adjuvant ONC201 following radiation, two DIPG patients remain progression-free for at least 53 and 81 weeks. Radiographic regressions, including a complete response, were reported by investigators in a subset of patients with thalamic and pontine gliomas, along with improvements in disease-associated neurological symptoms. INTERPRETATION: The clinical outcomes and radiographic responses in these patients provide the preliminary, and initial clinical proof-of-concept for targeting H3 K27M-mutant diffuse midline glioma with ONC201, regardless of age or location, providing rationale for robust clinical testing of the agent.
Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Histonas/genética , Mutação , Receptores de Dopamina D2/química , Adolescente , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Criança , Pré-Escolar , Feminino , Seguimentos , Glioma/genética , Glioma/patologia , Humanos , Imidazóis , Masculino , Prognóstico , Piridinas , Pirimidinas , Taxa de Sobrevida , Adulto JovemRESUMO
PURPOSE: Although image-guided biopsies of bone and soft tissue lesions have a low complication rate, there is limited data evaluating use of preprocedural laboratory tests. To address this issue, patients were not required to stop non-steroidal antiinflammatory drugs (NSAIDs) and aspirin or to obtain preprocedural laboratory tests [complete blood count (CBC) and international normalized ratio (INR)], except in special circumstances. The bleeding complication rate, rate of same day biopsies, and the time from when the biopsy was ordered to when it was performed were obtained. MATERIALS AND METHODS: A total of 332 patients who underwent bone or soft tissue biopsies performed at our institution between 9/1/2017 and 1/9/2019 were prospectively analyzed. These data were compared to a retrospective biopsy cohort of 323 patients between 7/1/2015 and 7/1/2017. Data collected included method of image guidance and bleeding complication rate. The number of days from ordering to performing a biopsy and number of same day biopsies were recorded. RESULTS: There were no bleeding complications in either cohort (OR 1.00, P = 1). The mean time from ordering to performing a bone biopsy was significantly decreased in the prospective group (6.6 days) compared to the retrospective group (8.1 days) (P = 0.012). There were more same day biopsies in the prospective cohort (11.4% vs. 3.4%) (P < 0.001). CONCLUSIONS: Preprocedural CBC and INR for bone and soft tissue biopsies can be safely eliminated in most patients. Biopsies performed while patients are taking NSAIDs/aspirin can safely be performed. Adopting revised preprocedural laboratory criteria can result in decreased time to completion of biopsies.
Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Aspirina/administração & dosagem , Sistema Musculoesquelético/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia por Agulha Fina/métodos , Estudos de Coortes , Feminino , Humanos , Biópsia Guiada por Imagem/métodos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos , Fatores de Risco , Adulto JovemRESUMO
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
RESUMO
BACKGROUND: Chromosomal instability is associated with earlier progression in isocitrate dehydrogenase (IDH)-mutated astrocytomas. Here we evaluated the prognostic significance of polysomy in gliomas tested for 1p/19q status. METHODS: We analyzed 412 histologic oligodendroglial tumors with use of 1p/19q testing at 8 institutions from 1996 to 2013; fluorescence in situ hybridization (FISH) for 1p/19q was performed. Polysomy was defined as more than two 1q and 19p signals in cells. Tumors were divided into groups on the basis of their 1p/19q status and polysomy and were compared for progression-free survival (PFS) and overall survival (OS). RESULTS: In our cohort, 333 tumors (81%) had 1p/19q loss; of these, 195 (59%) had concurrent polysomy and 138 (41%) lacked polysomy, 79 (19%) had 1p/19q maintenance; of these, 30 (38%) had concurrent polysomy and 49 (62%) lacked polysomy. In agreement with prior studies, the group with 1p/19q loss had significantly better PFS and OS than did the group with 1p/19q maintenance (P < 0.0001 each). Patients with 1p/19q loss and polysomy showed significantly shorter PFS survival than patients with 1p/19q codeletion only (P < 0.0001), but longer PFS and OS than patients with 1p/19q maintenance (P < 0.01 and P < 0.0001). There was no difference in survival between tumors with >30% polysomic cells and those with <30% polysomic cells. Polysomy had no prognostic significance on PFS or OS in patients with 1p/19q maintenance. CONCLUSIONS: The presence of polysomy in oligodendroglial tumors with codeletion of 1p/19q predicts early recurrence and short survival in patients with 1p/19q codeleted tumors.
Assuntos
Aneuploidia , Neoplasias Encefálicas/genética , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 1/genética , Oligodendroglioma/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/terapia , Quimioterapia Adjuvante , Criança , Instabilidade Cromossômica , Deleção Cromossômica , Feminino , Humanos , Hibridização in Situ Fluorescente , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante , Procedimentos Neurocirúrgicos , Oligodendroglioma/terapia , Prognóstico , Intervalo Livre de Progressão , Radioterapia Adjuvante , Taxa de Sobrevida , Adulto JovemRESUMO
PURPOSE: There is variability in survival within IDH mutant gliomas determined by chromosomal events. Copy number variation (CNV) abundance associated with survival in low-grade and IDH mutant astrocytoma has been reported. Our purpose was to correlate the extent of genome-wide CNV abundance in IDH mutant astrocytomas with MRI features. METHODS: Presurgical MRI and CNV plots derived from Illumina 850k EPIC DNA methylation arrays of 18 cases of WHO grade II-IV IDH mutant astrocytomas were reviewed. IDH mutant astrocytomas were divided into CNV stable group (CNV-S) with ≤ 3 chromosomal gains or losses and lack of focal gene amplifications and CNV unstable group (CNV-U) with > 3 large chromosomal gains/losses and/or focal amplifications. The associations between MR features, relative cerebral blood volume (rCBV), CNV abundance, and time to progression were assessed. Tumor rCBV estimates were obtained using DSC T2* perfusion analysis. RESULTS: There were nine (50%) CNV-S and nine (50%) CNV-U IDH mutant astrocytomas. CNV-U tumors showed larger mean tumor size (P = 0.004) and maximum diameter on FLAIR (P = 0.004) and also demonstrated significantly higher median rCBV than CNV-S tumors (2.62 vs 0.78, P = 0.019). CNV-U tumors tended to have shorter time to progression although without statistical significance (P = 0.393). CONCLUSIONS: Larger size/diameter and higher rCBVs were seen associated CNV-U astrocytomas, suggesting a correlation of aggressive imaging phenotype with unstable and aggressive genotype in IDH mutant astrocytomas.
Assuntos
Astrocitoma/diagnóstico por imagem , Astrocitoma/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Variações do Número de Cópias de DNA/genética , Isocitrato Desidrogenase/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Astrocitoma/mortalidade , Neoplasias Encefálicas/mortalidade , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Retrospectivos , Adulto JovemRESUMO
Phosphatidylinositol 3-kinase signaling promotes cell growth and survival and is frequently activated in infiltrative gliomas. Activating mutations in PIK3CA gene are observed in 6-15% of glioblastomas, although their clinical significance is largely undescribed. The objective of this study was to examine whether PIK3CA mutations are associated with a specific clinical phenotype in glioblastoma. We retrospectively reviewed 157 consecutive newly diagnosed glioblastoma patients from December 2009 to June 2012 who underwent molecular profiling consisting of targeted hotspot genotyping, fluorescence in situ hybridization for gene amplification, and methylation-specific PCR for O6-methylguanine-DNA methyltransferase promoter methylation. Molecular alterations were correlated with clinical features, imaging and outcome. The Cancer Genome Atlas data was analyzed as a validation set. There were 91 males; median age was 58 years (range, 23-85). With a median follow-up of 20.9 months, median progression-free survival (PFS) and estimated overall survival (OS) were 11.9 and 24.0 months, respectively. Thirteen patients (8.3%) harbored PIK3CA mutation, which was associated with younger age (mean 49.4 vs. 58.1 years, p = 0.02). PIK3CA mutation correlated with shorter PFS (median 6.9 vs. 12.4 months, p = 0.01) and OS (median 21.2 vs. 24.2 months, p = 0.049) in multivariate analysis. A significant association between PIK3CA mutation and more disseminated disease at diagnosis, as defined by gliomatosis, multicentric lesions, or distant leptomeningeal lesions, was observed (46.2% vs. 11.1%, p = 0.004). In conclusion, despite the association with younger age, PIK3CA activating mutations are associated with earlier recurrence and shorter survival in adult glioblastoma. The aggressive course of these tumors may be related to their propensity for disseminated presentation.