Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Food Funct ; 15(10): 5485-5495, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38690748

RESUMO

Ginsenoside Rk1, one kind of ginsenoside, is a minor ginsenoside found in Panax ginseng and used as traditional Chinese medicine for centuries. It exhibits anti-tumor and anti-aggregation effects. However, little research has been done on its effect on endothelial function. This study investigated whether ginsenoside Rk1 improved endothelial dysfunction in diabetes and the underlying mechanisms in vivo and in vitro. Male C57BL/6 mice were fed with a 12 week high-fat diet (60% kcal % fat), whereas treatment groups were orally administered with ginsenoside Rk1 (10 and 20 mg per kg per day) in the last 4 weeks. Aortas isolated from C57BL/6 mice were induced by high glucose (HG; 30 mM) and co-treated with or without ginsenoside Rk1 (1 and 10 µM) for 48 h ex vivo. Moreover, primary rat aortic endothelial cells (RAECs) were cultured and stimulated by HG (44 mM) to mimic hyperglycemia, with or without the co-treatment of ginsenoside Rk1 (10 µM) for 48 h. Endothelium-dependent relaxations of mouse aortas were damaged with elevated oxidative stress and downregulation of three isoforms of peroxisome proliferator-activated receptors (PPARs), PPAR-α, PPAR-ß/δ, and PPAR-γ, as well as endothelial nitric oxide synthase (eNOS) phosphorylation due to HG or high-fat diet stimulation, which also existed in RAECs. However, after the treatment with ginsenoside Rk1, these impairments were all ameliorated significantly. Moreover, the vaso-protective and anti-oxidative effects of ginsenoside Rk1 were abolished by PPAR antagonists (GSK0660, GW9662 or GW6471). In conclusion, this study reveals that ginsenoside Rk1 ameliorates endothelial dysfunction and suppresses oxidative stress in diabetic vasculature through activating the PPAR/eNOS pathway.


Assuntos
Endotélio Vascular , Ginsenosídeos , Camundongos Endogâmicos C57BL , Receptores Ativados por Proliferador de Peroxissomo , Ginsenosídeos/farmacologia , Animais , Masculino , Camundongos , Ratos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Aorta/efeitos dos fármacos , Aorta/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Panax/química , Dieta Hiperlipídica
2.
Am J Chin Med ; : 1-17, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38798150

RESUMO

Hyperglycemia induces chronic stresses, such as oxidative stress and endoplasmic reticulum (ER) stress, which can result in [Formula: see text]-cell dysfunction and development of Type 2 Diabetes Mellitus (T2DM). Ginsenoside Rk1 is a minor ginsenoside isolated from Ginseng. It has been shown to exert anti-cancer, anti-inflammatory, anti-oxidant, and neuroprotective effects; however, its effects on pancreatic cells in T2DM have never been studied. This study aims to examine the novel effects of Ginsenoside Rk1 on ER stress-induced apoptosis in a pancreatic [Formula: see text]-cell line MIN6 and HFD-induced diabetic pancreas, and their underlying mechanisms. We demonstrated that Ginsenoside Rk1 alleviated ER stress-induced apoptosis in MIN6 cells, which was accomplished by directly targeting and activating insulin-like growth factor 1 receptor (IGF-1R), thus activating the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/Bcl-2-associated agonist of cell death (Bad)-B-cell lymphoma-2 (Bcl-2) pathway. This pathway was also confirmed in an HFD-induced diabetic pancreas. Meanwhile, the use of the IGF-1R inhibitor PQ401 abolished this anti-apoptotic effect, confirming the role of IGF-1R in mediating anti-apoptosis effects exerted by Ginsenoside Rk1. Besides, Ginsenoside Rk1 reduced pancreas weights and increased pancreatic insulin contents, suggesting that it could protect the pancreas from HFD-induced diabetes. Taken together, our study provided novel protective effects of Ginsenoside Rk1 on ER stress-induced [Formula: see text]-cell apoptosis and HFD-induced diabetic pancreases, as well as its direct target with IGF-1R, indicating that Ginsenoside Rk1 could be a potential drug for the treatment of T2DM.

3.
J Mater Chem B ; 12(19): 4666-4672, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38647183

RESUMO

The formation of transient structures plays important roles in biological processes, capturing temporary states of matter through influx of energy or biological reaction networks catalyzed by enzymes. These natural transient structures inspire efforts to mimic this elegant mechanism of structural control in synthetic analogues. Specifically, though traditional supramolecular materials are designed on the basis of equilibrium formation, recent efforts have explored out-of-equilibrium control of these materials using both direct and indirect mechanisms; the preponderance of such works has been in the area of low molecular weight gelators. Here, a transient supramolecular hydrogel is realized through cucurbit[7]uril host-guest physical crosslinking under indirect control from a biocatalyzed network that regulates and oscillates pH. The duration of transient hydrogel formation, and resulting mechanical properties, are tunable according to the dose of enzyme, substrate, or pH stimulus. This tunability enables control over emergent functions, such as the programmable burst release of encapsulated model macromolecular payloads.


Assuntos
Hidrocarbonetos Aromáticos com Pontes , Hidrogéis , Imidazóis , Hidrogéis/química , Hidrogéis/síntese química , Concentração de Íons de Hidrogênio , Imidazóis/química , Hidrocarbonetos Aromáticos com Pontes/química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/síntese química , Biocatálise , Estrutura Molecular , Muramidase/química , Muramidase/metabolismo
4.
Int J Rheum Dis ; 27(1): e14970, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37947261

RESUMO

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a rare and serious systemic inflammatory disorder that occurs following a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This study aims to investigate the clinical manifestations, risk factors associated with pediatric intensive care unit (PICU) admission, and outcome among children with MIS-C in Taiwan. METHODS: A retrospective analysis was conducted among pediatric patients diagnosed with MIS-C between June 2022 and February 2023 at Chang Gung Memorial Hospital, Linkou, Taiwan. Data on demographics, clinical features, laboratory findings, treatment modalities, and outcomes were collected and analyzed. RESULTS: Twenty-eight MIS-C patients, including 9 boys and 19 girls, with an average age of 5.3 ± 3.8 years old, were enrolled. Most of the cases (78.6%) were diagnosed following the first pandemic wave of COVID-19 in Taiwan. The leading clinical manifestations observed were fever (100%), skin rash (64.3%), tachycardia (46.4%), and vomiting (46.4%). Nine patients (32.1%) were admitted to the PICU due to hypotension or neurological manifestations. Higher levels of band-form white blood cells, procalcitonin, ferritin, d-dimer, prothrombin time, NT-proBNP, and lower platelet levels on arrival were associated with PICU admission (p = 3.9 × 10-2 ,9 × 10-3 , 4 × 10-3 ,1 × 10-3 , 5 × 10-3 , 4.1 × 10-2 , and 3.4 × 10-2 , respectively). Arrhythmia in one case (3.5%) and coronary artery abnormalities, including dilatation in two cases (7.1%) and small aneurysms in one case (3.5%) were identified. Regardless of ICU admission, no patients experienced systolic dysfunction or mortality following treatment. CONCLUSION: MIS-C cases in Taiwan have a favorable outcome. Although one-third of the patients required PICU admission, none of the MIS-C cases resulted in severe cardiovascular morbidity or mortality. This study provides valuable insights into the clinical manifestations and outcomes associated with PICU admission in children with MIS-C in Taiwan.


Assuntos
COVID-19/complicações , Doenças do Tecido Conjuntivo , Síndrome de Resposta Inflamatória Sistêmica , Masculino , Feminino , Humanos , Criança , Lactente , Pré-Escolar , Estudos Retrospectivos , Taiwan/epidemiologia , Hospitalização , SARS-CoV-2
5.
Bioconjug Chem ; 35(1): 1-21, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38118277

RESUMO

The design and development of advanced drug delivery systems targeting reactive oxygen species (ROS) have gained significant interest in recent years for treating various diseases, including cancer, psychiatric diseases, cardiovascular diseases, neurological diseases, metabolic diseases, and chronic inflammations. Integrating specific chemical bonds capable of effectively responding to ROS and triggering drug release into the delivery system is crucial. In this Review, we discuss commonly used conjugation linkers (chemical bonds) and categorize them into two groups: cleavable linkers and noncleavable linkers. Our goal is to clarify their unique drug release mechanisms from a chemical perspective and provide practical organic synthesis approaches for their efficient production. We showcase numerous significant examples to demonstrate their synthesis routes and diverse applications. Ultimately, we strive to present a comprehensive overview of cleavage and noncleavage chemistry, offering insights into the development of smart drug delivery systems that respond to ROS.


Assuntos
Nanopartículas , Neoplasias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Inflamação/tratamento farmacológico , Nanopartículas/química , Liberação Controlada de Fármacos
6.
Chin Med ; 18(1): 126, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777788

RESUMO

Traditional Chinese medicine (TCM) is increasingly getting attention worldwide, as it has played a very satisfactory role in treating COVID-19 during these past 3 years, and the Chinese government highly supports the development of TCM. The therapeutical theory and efficacies of Chinese medicine (CM) involve the safety, effectiveness and quality evaluation of CM, which requires a standard sound system. Constructing a scientific and reasonable CM quality and safety evaluation system, and establishing high-quality standards are the key cores to promote the high-quality development of CM. Through the traditional quality control methods of CM, the progress of the Q-marker research and development system proposed in recent years, this paper integrated the research ideas and methods of CM quality control and identified effective quality parameters. In addition, we also applied these effective quality parameters to create a new and supervision model for the quality control of CM. In conclusion, this review summarizes the methods and standards of quality control research used in recent years, and provides references to the quality control of CM and how researchers conduct quality control experiments.

7.
Free Radic Biol Med ; 208: 299-308, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37625657

RESUMO

Progressive death of dopaminergic (DA) neurons is the main cause of Parkinson's disease (PD). The discovery of drug candidates to prevent DA neuronal death is required to address the pathological aspects and alter the process of PD. Azoramide is a new small molecule compound targeting ER stress, which was originally developed for the treatment of diabetes. In this study, pre-treatment with Azoramide was found to suppress mitochondria-targeting neurotoxin MPP+-induced DA neuronal death and locomotor defects in zebrafish larvae. Further study showed that pre-treatment with Azoramide significantly attenuated MPP+-induced SH-SY5Y cell death by reducing aberrant changes in nuclear morphology, mitochondrial membrane potential, intracellular reactive oxygen species, and apoptotic biomarkers. The mechanistic study revealed that Azoramide was able to up-regulate the expression of ER chaperone BiP and thereby prevented MPP+-induced BiP decrease. Furthermore, pre-treatment with Azoramide failed to suppress MPP+-induced cytotoxicity in the presence of the BiP inhibitor HA15. Taken together, these results suggested that Azoramide is a potential neuroprotectant with pro-survival effects against MPP+-induced cell death through up-regulating BiP expression.


Assuntos
1-Metil-4-fenilpiridínio , Neurônios Dopaminérgicos , Chaperona BiP do Retículo Endoplasmático , Neuroblastoma , Animais , Humanos , 1-Metil-4-fenilpiridínio/toxicidade , Apoptose , Morte Celular , Linhagem Celular Tumoral , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neuroblastoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/metabolismo , Chaperona BiP do Retículo Endoplasmático/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático/metabolismo
8.
Nano Lett ; 23(13): 5951-5958, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37384632

RESUMO

Incorporating temperature- and air-stable organic radical species into molecular designs is a potentially advantageous means of controlling the properties of electronic materials. However, we still lack a complete understanding of the structure-property relationships of organic radical species at the molecular level. In this work, the charge transport properties of (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) radical-containing nonconjugated molecules are studied using single-molecule charge transport experiments and molecular modeling. Importantly, the TEMPO pendant groups promote temperature-independent molecular charge transport in the tunneling region relative to the quenched and closed-shell phenyl pendant groups. Results from molecular modeling show that the TEMPO radicals interact with the gold metal electrodes near the interface to facilitate a high-conductance conformation. Overall, the large enhancement of charge transport by incorporation of open-shell species into a single nonconjugated molecular component opens exciting avenues for implementing molecular engineering in the development of next-generation electronic devices based on novel nonconjugated radical materials.

9.
Theranostics ; 13(10): 3204-3223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351161

RESUMO

Gene therapy, an effective medical intervention strategy, is increasingly employed in basic research and clinical practice for promising and unique therapeutic effects for diseases treatment, such as cardiovascular disorders, cancer, neurological pathologies, infectious diseases, and wound healing. However, naked DNA/RNA is readily hydrolyzed by nucleic acid degrading enzymes in the extracellular environment and degraded by lysosomes during intracellular physiological conditions, thus gene transfer must cross complex cellular and tissue barriers to deliver genetic materials into targeted cells and drive efficient activation or inhibition of the proteins. At present, the lack of safe, highly efficient, and non-immunogenic drug carriers is the main drawback of gene therapy. Considering the dense hydroxyl groups on the benzene rings in natural polyphenols that exert a strong affinity to various nucleic acids via hydrogen bonding and hydrophobic interactions, polyphenol-based carriers are promising anchors for gene delivery in which polyphenols serve as the primary building blocks. In this review, the recent progress in polyphenol-assisted gene delivery was summarized, which provided an easily accessible reference for the design of future polyphenol-based gene delivery vectors. Nucleic acids discussed in this review include DNA, short interfering RNAs (siRNA), microRNA (miRNA), double-strand RNA (dsRNA), and messenger RNA (mRNA).


Assuntos
Ácidos Nucleicos , DNA/metabolismo , RNA Interferente Pequeno/genética , Técnicas de Transferência de Genes , Terapia Genética
10.
J Control Release ; 358: 510-540, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37169178

RESUMO

The etiology of inflammatory bowel disease (IBD) is extremely complex and related to an excessive immune response that results in the pathologically release of reactive oxygen species (ROS) via tissue injury and chronic inflammation. Generally, excessive ROS production is one of the essential mediators for inflammatory pathogenesis. Targeting cumulate ROS to interrupt pathological inflammatory responses has been recognized as a feasible strategy for inflammatory suppression of IBD. Correspondingly, the overexpression of ROS can also trigger the drug release of novel drug delivery systems to alleviate IBD symptoms. In this review, we summarized the pathological production of endogenous ROS in IBD, discussed the enormous potential of multiple kinds of ROS-scavenging and ROS-triggering novel delivery systems for the treatment of IBD, including enzymology, metal, polyphenols, natural pigments, nitroxide radicals-contained and sulfide-loaded drug delivery systems, and other novel ROS-responsive materials to synthesize ROS-based drug delivery systems. We also summarized the immunomodulatory effects of ROS-targeted drug delivery systems for the treatment of IBD. Besides, based on the requirements of clinical applications and industrialization development, the challenges faced in the evolution of redox drug delivery systems were also discussed. Collectively, this review provides a reliable reference to the development of ROS-scavenging and ROS-triggering drug delivery systems for the medical intervention of IBD.


Assuntos
Doenças Inflamatórias Intestinais , Humanos , Espécies Reativas de Oxigênio , Doenças Inflamatórias Intestinais/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Inflamação/tratamento farmacológico , Oxirredução
11.
Angew Chem Int Ed Engl ; 62(11): e202216537, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36598411

RESUMO

The transient self-assembly of molecules under the direction of a consumable fuel source is fundamental to biological processes such as cellular organization and motility. Such biomolecular assemblies exist in an out-of-equilibrium state, requiring continuous consumption of high energy molecules. At the same time, the creation of bioinspired supramolecular hydrogels has traditionally focused on associations occurring at the thermodynamic equilibrium state. Here, hydrogels are prepared from cucurbit[7]uril host-guest supramolecular interactions through transient physical crosslinking driven by the consumption of a reactive chemical fuel. Upon action from this fuel, the affinity and dynamics of CB[7]-guest recognition are altered. In this way, the lifetime of transient hydrogel formation and the dynamic modulus obtained are governed by fuel consumption, rather than being directed by equilibrium complex formation.

12.
J Ethnopharmacol ; 303: 115961, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442757

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Huanglian Jiedu Decoction (HLJDD) is a traditional heat-dissipating and detoxicating prescription used in Chinese medicine and has been extensively applied in the clinical treatment of ischemic stroke. Preliminary research confirmed that HLJDD exerts a neuroprotective effect on brain tissue injury caused by cerebral ischemia by promoting angiogenesis. However, the components of HLJDD responsible for its medicinal activity in ischemic injury remain unclear. AIM OF THE STUDY: The aim of this study was to identify the active components of HLJDD that could promote angiogenesis and investigate its underlying mechanism, as well as Hypoxia-inducible factor-1α (HIF-1α)/Vascular endothelial growth factor (VEGF) signalings in human umbilical vein endothelial cells (HUVECs). MATERIALS AND METHODS: The specific binding components of HLJDD with HUVECs were isolated and identified through a combination of live cell biospecific extraction, solid-phase extraction, and ultra performance liquid chromatography (UPLC)-Orbitrap Fusion Tribrid mass spectrometry (MS). Their pharmacological activity against oxygen-glucose deprivation-reperfusion (OGD/R) injury and in vitro pro-angiogenesis was validated using Cell Counting Kit-8 (CCK-8) and tube formation analysis, respectively. Finally, we explored the effect of active ingredients on the expression levels of HIF-1α and VEGF using enzyme-linked immunosorbent assay. Molecular docking was used to predict the potential binding of six active components to phosphoinositide 3-kinase (PI3K), serine/threonine-specific protein kinase (AKT) and Von Hippel-Lindau (VHL) proteins, which are involved in the regulation of HIF-1α and are highly associated with angiogenesis. RESULTS: A total of 13 HUVECs-specific HLJDD components were identified, and 10 of them were shown to protect against OGD/R injury. We were the first to demonstrate that two of these components have a protective role in OGD/R-induced HUVECs injury. Additionally, seven of these 10 components exhibited angiogenesis-promoting activity, and two of these components were shown, for the first time, to promote angiogenesis in HUVECs. These effects might occur through the HIF-1α/VEGF pathway. Molecular docking results showed that all six active ingredients could stably bind to PI3K and AKT proteins, suggesting that these two proteins may be potential targets for six active ingredients. CONCLUSIONS: The approach employed in this study effectively identified proangiogenic components in HLJDD that might act via PI3K/AKT/HIF-1α/VEGF pathways and other mechanisms involved in angiogenesis. In conclusion, this study was the first to demonstrate four compounds with new bioactivities and could also provide insight into the isolation and discovery of new bioactive compounds existing in Chinese medicine with potential clinical value.


Assuntos
Fosfatidilinositol 3-Quinases , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Proto-Oncogênicas c-akt , Simulação de Acoplamento Molecular , Proteínas Serina-Treonina Quinases , Fatores de Crescimento do Endotélio Vascular , Células Endoteliais da Veia Umbilical Humana/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia
13.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232291

RESUMO

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, which is characterized by hyperglycemia, chronic insulin resistance, progressive decline in ß-cell function, and defect in insulin secretion. It has become one of the leading causes of death worldwide. At present, there is no cure for T2DM, but it can be treated, and blood glucose levels can be controlled. It has been reported that diabetic patients may suffer from the adverse effects of conventional medicine. Therefore, alternative therapy, such as traditional Chinese medicine (TCM), can be used to manage and treat diabetes. In this review, glycyrrhizic acid (GL) and its derivatives are suggested to be promising candidates for the treatment of T2DM and its complications. It is the principal bioactive constituent in licorice, one type of TCM. This review comprehensively summarized the therapeutic effects and related mechanisms of GL and its derivatives in managing blood glucose levels and treating T2DM and its complications. In addition, it also discusses existing clinical trials and highlights the research gap in clinical research. In summary, this review can provide a further understanding of GL and its derivatives in T2DM as well as its complications and recent progress in the development of potential drugs targeting T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Humanos , Hipoglicemiantes/uso terapêutico , Secreção de Insulina
14.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292919

RESUMO

Jatrorrhizine (JAT) is one of the major bioactive protoberberine alkaloids found in rhizoma coptidis, which has hypoglycemic and hypolipidemic potential. This study aimed to evaluate the vasoprotective effects of JAT in diabetes and obesity and the underlying mechanism involved. Mouse aortas, carotid arteries and human umbilical cord vein endothelial cells (HUVECs) were treated with risk factors (high glucose or tunicamycin) with and without JAT ex vivo and in vitro. Furthermore, aortas were obtained from mice with chronic treatment: (1) control; (2) diet-induced obese (DIO) mice fed a high-fat diet (45% kcal% fat) for 15 weeks; and (3) DIO mice orally administered JAT at 50 mg/kg/day for the last 5 weeks. High glucose or endoplasmic reticulum (ER) stress inducer tunicamycin impaired acetylcholine-induced endothelium-dependent relaxations (EDRs) in mouse aortas, induced oxidative stress in carotid arteries and HUVECs, downregulated phosphorylations of Akt at Ser473 and eNOS at Ser1177 and enhanced ER stress in mouse aortas and HUVECs, and these impairments were reversed by cotreatment with JAT. JAT increased NO release in high-glucose-treated mouse aortas and HUVECs. In addition, chronic JAT treatment restored endothelial function with EDRs comparable to the control, increased Akt/eNOS phosphorylation, and attenuated ER stress and oxidative stress in aortas from DIO mice. Blood pressure, glucose sensitivity, fatty liver and its morphological change, as well as plasma levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and plasma lipid profile, were also normalized by JAT treatment. Collectively, our data may be the first to reveal the vasoprotective effect of JAT that ameliorates endothelial dysfunction in diabetes and obesity through enhancement of the Akt/eNOS pathway and NO bioavailability, as well as suppression of ER stress and oxidative stress.


Assuntos
Diabetes Mellitus , Medicamentos de Ervas Chinesas , Camundongos , Humanos , Animais , Estresse do Retículo Endoplasmático , Tunicamicina/farmacologia , Endotélio Vascular/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Acetilcolina/metabolismo , Alanina Transaminase/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Camundongos Endogâmicos C57BL , Diabetes Mellitus/metabolismo , Estresse Oxidativo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Obesidade/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Aspartato Aminotransferases/metabolismo , Lipídeos/farmacologia
15.
Theranostics ; 12(12): 5596-5614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910802

RESUMO

Rationale: Ulcerative colitis (UC), a typical kind of inflammatory bowel disease (IBD), is an idiopathic chronic intestinal inflammation. Conventional therapeutic strategies mainly focus on the rebalance of pro-inflammation and anti-inflammation cytokines, whereas targeting damaged intestinal barriers, imbalanced intestinal microbiota and dysregulated mucosal immune responses in UC remain a big challenge. The objective of this study was to develop turmeric-derived nanovesicles (TNVs) for alleviation of colitis and explore the underlying mechanisms. Methods: TNVs were isolated and purified through differential centrifugation. The targeted ability was evaluated on the dextran sulfate sodium (DSS)-induced mouse model by IVIS imaging system. The anti-inflammation efficacy was studied in lipopolysaccharide (LPS)-induced macrophages and DSS-induced acute and chronic colitic mouse model. In addition, the influence of TNVs on the intestinal microbiota was investigated via 16S rRNA microbiome sequence and the condition of macrophage polarization after TNVs treatment was analyzed by flow cytometry. Results: TNVs were isolated and characterized as nano-size spheroids. The IVIS imaging experiment indicated that orally administrated TNVs could accumulate in the inflamed colon sites and exhibited superior anti-inflammatory activity both in vitro and in vivo. The 16S rRNA sequencing suggested the important role of TNVs in the regulation of gut microbiota. Further, TNVs could promote the transformation of M1 phenotype to M2 macrophages and restore the damaged intestinal epithelium barrier to exert the anti-colitis efficacy. Conclusion: Collectively, oral administration of TNVs exhibited excellent anti-inflammatory efficacy through restoring the damaged intestinal barrier, regulating the gut microbiota and reshaping the macrophage phenotype. This study sheds light on the application of natural exosome-like nanovesicles for the treatment of UC.


Assuntos
Colite Ulcerativa , Curcuma , Sistemas de Liberação de Fármacos por Nanopartículas , Animais , Anti-Inflamatórios/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colo , Citocinas , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia
16.
Front Microbiol ; 13: 898961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903472

RESUMO

Phage therapy is an alternative approach to overcome the problem of multidrug resistance in bacteria. In this study, a bacteriophage named PZL-Ah152, which infects Aeromonas hydrophila, was isolated from sewage, and its biological characteristics and genome were studied. The genome contained 54 putative coding sequences and lacked known putative virulence factors, so it could be applied to phage therapy. Therefore, we performed a study to (i) investigate the efficacy of PZL-Ah152 in reducing the abundance of pathogenic A. hydrophila strain 152 in experimentally infected crucian carps, (ii) evaluate the safety of 12 consecutive days of intraperitoneal phage injection in crucian carps, and (iii) determine how bacteriophages impact the normal gut microbiota. The in vivo and in vitro results indicated that the phage could effectively eliminate A. hydrophila. Administering PZL-Ah152 (2 × 109 PFU) could effectively protect the fish (2 × 108 CFU/carp). Furthermore, a 12-day consecutive injection of PZL-Ah152 did not cause significant adverse effects in the main organs of the treated animals. We also found that members of the genus Aeromonas could enter and colonize the gut. The phage PZL-Ah152 reduced the number of colonies of the genus Aeromonas. However, no significant changes were observed in α-diversity and ß-diversity parameters, which suggested that the consumed phage had little effect on the gut microbiota. All the results illustrated that PZL-Ah152 could be a new therapeutic method for infections caused by A. hydrophila.

17.
Pharmacol Res ; 178: 106146, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35227890

RESUMO

Inflammatory bowel disease (IBD) refers to a gamut of disorders that are characterized by chronic intestinal inflammation, including ulcerative colitis (UC) and Crohn's disease (CD), which often leads to mucosal ulceration and progressive loss of intestinal function. The etiopathogenesis of IBD has not been completely clarified, although multiple factors involving genetic modifications, host immune dysfunction, intestinal dysbiosis and environmental effects have been implicated. Currently, pharmacotherapies including both non-targeted and targeted biological agents are widely used for the clinical treatment of IBD. In addition, novel therapeutic approaches that target the intestinal microorganisms, such as fecal microbiota transplantation, antibiotics, probiotics and microbial metabolite inhibitors, are also under development. However, these treatments are either accompanied by side effects or cannot achieve complete clinical remission when used alone. The efficacy and safety of drugs are currently a clinical challenge. Thus, advanced drug delivery systems are needed for targeted delivery of drugs to the inflammatory sites and avoid absorption by healthy tissues. In this review, we have summarized the latest research on the pathogenesis of IBD and the emerging pharmacotherapies, and discussed potential therapeutic targets for innovative therapies.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Colite Ulcerativa/complicações , Doença de Crohn/complicações , Disbiose/complicações , Transplante de Microbiota Fecal , Humanos , Inflamação/complicações , Doenças Inflamatórias Intestinais/tratamento farmacológico
18.
J Ethnopharmacol ; 288: 114992, 2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35032586

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dachuanxiong Formula (DCXF) is a classical Chinese medicine prescription and is composed of dried rhizomes from Ligusticum striatum DC. (Chuanxiong Rhizoma) and Gastrodia elata Bl. (Gastrodiae Rhizoma) at the ratio of 4:1 (w/w). It has been used as Chinese medicine prescription for thousands of years. DCXF is used traditionally to treat many diseases, including migraine, atherosclerosis and ischemic stroke. AIM OF THE STUDY: This study aimed to investigate the effects of DCXF on pain response in migraine mice, and the underlying mechanisms using proteomics and bioinformatics analyses. MATERIALS AND METHODS: DCXF extract was prepared by mixing Chuanxiong Rhizoma and Gastrodiae Rhizoma at a mass ratio of 4:1 (w/w). After extraction, the extract was filtered prior to high performance liquid chromatography (HPLC) analysis. Nitroglycerin (NTG) was used to establish a mouse migraine model, and a behaviour study was conducted by hot plate test. In addition, proteomics and bioinformatics studies were conducted to investigate the mechanisms of DCXF-mediating anti-migraine treatment. RESULTS: Our results showed that there were significant differences in the latencies between NTG-treated and DCXF low dose- and high doses-treated groups at 30 min after NTG injection, this suggested that DCXF could ameliorate pain response in migraine mice. Besides, the plasma levels of endothelin-1 were also measured. NTG group significantly enhanced the endothelin-1 level compared to the control group. In contrast, DCXF low dose and high dose groups significantly reduced this level compared to NTG group. In addition, the underlying mechanisms were also investigated. Our results demonstrated that the anti-migraine treatment of DCXF was highly associated with fatty acid synthesis, suggesting that DCXF ameliorated pain response through reducing endothelin-1 level and regulating fatty acid synthesis. CONCLUSIONS: The present study revealed the anti-migraine effect of DCXF in migraine mice and provided insights into the mechanisms of DCXF-mediating anti-migraine treatment.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Endotelina-1/sangue , Ácidos Graxos/biossíntese , Transtornos de Enxaqueca/tratamento farmacológico , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/administração & dosagem , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nitroglicerina/toxicidade
19.
Med Res Rev ; 42(3): 1246-1279, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35028953

RESUMO

Immunotherapy sheds new light to cancer treatment and is satisfied by cancer patients. However, immunotoxicity, single-source antibodies, and single-targeting stratege are potential challenges to the success of cancer immunotherapy. A huge number of promising lead compounds for cancer treatment are of natural origin from herbal medicines. The application of natural products from herbal medicines that have immunomodulatory properties could alter the landscape of immunotherapy drastically. The present study summarizes current medication for cancer immunotherapy and discusses the potential chemicals from herbal medicines as immune checkpoint inhibitors that have a broad range of immunomodulatory effects. Therefore, this review provides valuable insights into the efficacy and mechanism of actions of cancer immunotherapies, including natural products and combined treatment with immune checkpoint inhibitors, which could confer an improved clinical outcome for cancer treatment.


Assuntos
Produtos Biológicos , Neoplasias , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Humanos , Inibidores de Checkpoint Imunológico , Imunomodulação , Imunoterapia , Neoplasias/terapia
20.
Arch Virol ; 167(2): 669-673, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35075514

RESUMO

Aeromonas hydrophila (A. hydrophila) is an opportunistic pathogen of fish, humans, and livestock, and has a severe negative impact on aquaculture development. Phage therapy is considered an alternative strategy for controlling bacterial infections and contamination. In this study, we isolated and characterized the genomes of two A. hydrophila-specific phages, PZL-Ah1 and PZL-Ah8, which, based on transmission electron microscopy, were identified as members of the family Podoviridae. Both of these phages had a relatively narrow host range, with lytic activity against Aeromonas spp. strains. Whole-genome sequence analysis revealed that PZL-Ah1 and PZL-Ah8 have a double-stranded DNA genome of 38,641 bp and 40,855 bp in length, with a GC content of 53.68% and 51.89%, respectively. Forty-four open reading frames (ORFs) were predicted in PZL-Ah1, and 52 were predicted in PZL-Ah8. Twenty-eight (63.6%) ORFs in PZL-Ah1 and 29 (55.8%) ORFs in PZL-Ah8 were predicted to encode functional proteins with homologs in the NCBI database, while the remaining ORFs were classified as encoding hypothetical proteins with unknown functions. A comparison with known phage genes suggested that ORF 02, ORF 29, and ORF 04 of PZL-Ah1 and ORF 2 and ORF 4 of PZL-Ah8 are involved in host cell lysis. This study expands the phage genome database and provides good candidates for phage typing applications.


Assuntos
Bacteriófagos , Podoviridae , Aeromonas hydrophila/genética , Animais , Bacteriófagos/genética , DNA Viral/genética , Genoma Viral , Humanos , Fases de Leitura Aberta , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA