Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Sci Total Environ ; 939: 173643, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821282

RESUMO

Mariculture effluent polishing with microalgal biofilm could realize effective nutrients removal and resolve the microalgae-water separation issue via biofilm scraping or in-situ aquatic animal grazing. Ubiquitous existence of antibiotics in mariculture effluents may affect the remediation performances and arouse ecological risks. The influence of combined antibiotics exposure at environment-relevant concentrations towards attached microalgae suitable for mariculture effluent polishing is currently lack of research. Results from suspended cultures could offer limited guidance since biofilms are richer in extracellular polymeric substances that may protect the cells from antibiotics and alter their transformation pathways. This study, therefore, explored the effects of combined antibiotics exposure at environmental concentrations towards seawater Chlorella sp. biofilm in terms of microalgal growth characteristics, nutrients removal, anti-oxidative responses, and antibiotics removal and transformations. Sulfamethoxazole (SMX), tetracycline (TL), and clarithromycin (CLA) in single, binary, and triple combinations were investigated. SMX + TL displayed toxicity synergism while TL + CLA revealed toxicity antagonism. Phosphorus removal was comparable under all conditions, while nitrogen removal was significantly higher under SMX and TL + CLA exposure. Anti-oxidative responses suggested microalgal acclimation towards SMX, while toxicity antagonism between TL and CLA generated least cellular oxidative damage. Parent antibiotics removal was in the order of TL (74.5-85.2 %) > CLA (60.8-69.5 %) > SMX (13.5-44.1 %), with higher removal efficiencies observed under combined than single antibiotic exposure. Considering the impact of residual parent antibiotics, CLA involved cultures were identified of high ecological risks, while medium risks were indicated in other cultures. Transformation products (TPs) of SMX and CLA displayed negligible aquatic toxicity, the parent antibiotics themselves deserve advanced removal. Four out of eight TPs of TL could generate chronic toxicity, and the elimination of these TPs should be prioritized for TL involved cultures. This study expands the knowledge of combined antibiotics exposure upon microalgal biofilm based mariculture effluent polishing.

2.
J Environ Manage ; 351: 119886, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142601

RESUMO

Comparing with single phytohormone application, applying multiple phytohormones to microalgae-based wastewater treatment systems can offer more extensive growth-promoting and stress-protecting effects for microalgae, yet the advantage of stress-relieving salicylic acid (SA) under combined phytohormones application scenario has not been exploited. Employing the improved capillary-driven attached microalgae culturing device (CD-PBR) previously used for single phytohormone application, this study compared the effects of mixed and single phytohormone(s) addition under as low as 10-7 M dosage. In order to make the best of SA for its stress-relieving property, postponed SA addition combined with applying other phytohormone(s) at the beginning of microalgae cultivation was also investigated. Combination of 10-6 M 6-benzylaminopurine (6-BA) with 10-7 M SA was sufficient for enhancing growth-promoting effects and anti-oxidative responses for attached Chlorella sp., while indole-3-acetic acid (IAA) addition was unnecessary. Combination of 6-BA addition at the beginning while postponed SA addition on Day 4 could further sustain such beneficial effects, while removing up to 99.7% total nitrogen (TN) and 97.9% total phosphorus (TP) from the bulk liquid. These results provided innovative strategies on mixed phytohormones addition for microalgae.


Assuntos
Chlorella , Microalgas , Reguladores de Crescimento de Plantas/farmacologia , Biofilmes , Nitrogênio , Biomassa
3.
Sci Total Environ ; 912: 169659, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38159749

RESUMO

Microalgal biofilm is promising in simultaneous pollutants removal, CO2 fixation, and biomass resource transformation when wastewater is used as culturing medium. Nitric oxide (NO) often accumulates in microalgal cells under wastewater treatment relevant abiotic stresses such as nitrogen deficiency, heavy metals, and antibiotics. However, the influence of emerging contaminants such as microplastics (MPs) on microalgal intracellular NO is still unknown. Moreover, the investigated MPs concentrations among existing studies were mostly several magnitudes higher than in real wastewaters, which could offer limited guidance for the effects of MPs on microalgae at environment-relevant concentrations. Therefore, this study investigated three commonly observed MPs in wastewater at environment-relevant concentrations (10-10,000 µg/L) and explored their impacts on attached Chlorella sp. growth characteristics, nutrients removal, and anti-oxidative responses (including intracellular NO content). The nitrogen source NO3--N at 49 mg/L being 20 % of the nitrogen strength in classic BG-11 medium was selected for MPs exposure experiments because of least intracellular NO accumulation, so that disturbance of intracellular NO by nitrogen availability could be avoided. Under such condition, 10 µg/L polyethylene (PE) MPs displayed most significant microalgal growth inhibition comparing with polyvinyl chloride (PVC) and polyamide (PA) MPs, showing extraordinarily low chlorophyll a/b ratios, and highest superoxide dismutase (SOD) activity and intracellular NO content after 12 days of MPs exposure. PVC MPs exposed cultures displayed highest malonaldehyde (MDA) content because of the toxic characteristics of organochlorines, and most significant correlations of intracellular NO content with conventional anti-oxidative parameters of SOD, CAT (catalase), and MDA. MPs accelerated phosphorus removal, and the type rather than concentration of MPs displayed higher influences, following the trend of PE > PA > PVC. This study expanded the knowledge of microalgal biofilm under environment-relevant concentrations of MPs, and innovatively discovered the significance of intracellular NO as a more sensitive indicator than conventional anti-oxidative parameters under MPs exposure.


Assuntos
Chlorella , Microalgas , Microplásticos/toxicidade , Plásticos , Águas Residuárias , Óxido Nítrico , Clorofila A , Superóxido Dismutase , Biofilmes , Nitrogênio
4.
J Agric Food Chem ; 71(46): 17833-17841, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37934701

RESUMO

Microalgae are promising platforms for biofuel production. Transcription factors (TFs) are emerging as key regulators of lipid metabolism for biofuel production in microalgae. We previously identified a novel TF MYB1, which mediates lipid accumulation in the green microalga Chlamydomonas under nitrogen depletion. However, the function of MYB1 on lipid metabolism in microalgae under standard growth conditions remains poorly understood. Here, we examined the effects of MYB1 overexpression (MYB1-OE) on lipid metabolism and physiological changes in Chlamydomonas. Under standard growth conditions, MYB1-OE transformants accumulated 1.9 to 3.2-fold more triacylglycerols (TAGs) than that in the parental line (PL), and total fatty acids (FAs) also significantly increased. Moreover, saturated FA (C16:0) was enriched in TAGs and total FAs in MYB1-OE transformants. Notably, starch and protein content and biomass production also significantly increased in MYB1-OE transformants compared with that in PL. Furthermore, RT-qPCR results showed that the expressions of key genes involved in TAG, FA, and starch biosynthesis were upregulated. In addition, MYB1-OE transformants showed higher biomass production without a compromised cell growth rate and photosynthetic activity. Overall, our results indicate that MYB1 overexpression not only enhanced lipid content but also improved starch and protein content and biomass production under standard growth conditions. TF MYB1 engineering is a promising genetic engineering tool for biofuel production in microalgae.


Assuntos
Chlamydomonas reinhardtii , Microalgas , Triglicerídeos/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microalgas/genética , Microalgas/metabolismo , Amido/metabolismo , Biomassa , Biocombustíveis , Ácidos Graxos/metabolismo
5.
Sci Total Environ ; 901: 166013, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37541491

RESUMO

Microalgae are great candidates for CO2 sequestration and sustainable production of food, feed, fuels and biochemicals. Light intensity, temperature, carbon supply, and cell physiological state are key factors of photosynthesis, and efficient phototrophic production of microalgal biomass occurs only when all these factors are in their optimal range simultaneously. However, this synergistic state is often not achievable due to the ever-changing environmental factors such as sunlight and temperature, which results in serious waste of sunlight energy and other resources, ultimately leading to high production costs. Most control strategies developed thus far in the bioengineering field actually aim to improve heterotrophic processes, but phototrophic processes face a completely different problem. Hence, an alternative control strategy needs to be developed, and precise microalgal cultivation is a promising strategy in which the production resources are precisely supplied according to the dynamic changes in key factors such as sunlight and temperature. In this work, the development and recent progress of precise microalgal phototrophic cultivation are reviewed. The key environmental and cultivation factors and their dynamic effects on microalgal cultivation are analyzed, including microalgal growth, cultivation costs and energy inputs. Future research for the development of more precise microalgae farming is discussed. This study provides new insight into developing cost-effective and efficient microalgae farming for CO2 sequestration.


Assuntos
Microalgas , Dióxido de Carbono , Biocombustíveis , Agricultura , Fazendas , Biomassa
6.
Appl Microbiol Biotechnol ; 107(2-3): 971-983, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36622426

RESUMO

Microalgae are promising feedstock for renewable fuels. The accumulation of oils in microalgae can be enhanced by nanoparticle exposure. However, the nanoparticles employed in previous studies are mostly non-biodegradable, which hinders nanoparticles developing as promising approach for biofuel production. We recently reported the engineered resin nanoparticles (iBCA-NPs), which were found to be biodegradable in this study. When the cells of green microalga Chlamydomonas reinhardtii were exposed to the iBCA-NPs for 1 h, the cellular triacyclglycerols (TAG) and starch contents increased by 520% and 60% than that in the control. The TAG production improved by 1.8-fold compared to the control without compromised starch production. Additionally, the content of total fatty acids increased by 1.3-fold than that in control. Furthermore, we found that the iBCA-NPs addition resulted in increased cellular reactive oxygen species (ROS) content and upregulated the activities of antioxidant enzymes. The relative expressions of the key genes involved in TAG and starch biosynthesis were also upregulated. Overall, our results showed that short exposure of the iBCA-NPs dramatically enhances TAG and starch accumulation in Chlamydomonas, which probably resulted from prompt upregulated expression of the key genes in lipid and starch metabolic pathways that were triggered by over-accumulated ROS. This study reported a useful approach to enhance energy-rich reserve accumulation in microalgae. KEY POINTS: 1. The first attempt to increase oil and starch in microalgae by biodegradable NPs. 2. The biodegradability of iBCA-NPs by the BOD test was more than 50% after 28 days. 3. The iBCA-NPs induce more energy reserves than that of previously reported NPs.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Microalgas , Nanopartículas , Chlamydomonas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Triglicerídeos/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Amido/metabolismo , Microalgas/metabolismo
7.
Metabolites ; 13(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36677040

RESUMO

Lipid transporters synergistically contribute to oil accumulation under normal conditions in microalgae; however, their effects on lipid metabolism under stress conditions are unknown. Here, we examined the effect of the co-expression of lipid transporters, fatty acid transporters, (FAX1 and FAX2) and ABC transporter (ABCA2) on lipid metabolism and physiological changes in the green microalga Chlamydomonas under nitrogen (N) starvation. The results showed that the TAG content in FAX1-FAX2-ABCA2 over-expressor (OE) was 2.4-fold greater than in the parental line. Notably, in FAX1-FAX2-ABCA2-OE, the major membrane lipids and the starch and cellular biomass content also significantly increased compared with the control lines. Moreover, the expression levels of genes directly involved in TAG, fatty acid, and starch biosynthesis were upregulated. FAX1-FAX2-ABCA2-OE showed altered photosynthesis activity and increased ROS levels during nitrogen (N) deprivation. Our results indicated that FAX1-FAX2-ABCA2 overexpression not only enhanced cellular lipids but also improved starch and biomass contents under N starvation through modulation of lipid and starch metabolism and changes in photosynthesis activity. The strategy developed here could also be applied to other microalgae to produce FA-derived energy-rich and value-added compounds.

8.
Crit Rev Biotechnol ; 43(2): 212-226, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35658696

RESUMO

To meet the sustainable development of the swine feed industry, it is essential to find alternative feed resources and develop new feed processing technologies. Distillers dried grains with solubles (DDGS) is a by-product from the ethanol industry consisting of adequate nutrients for swine and is an excellent choice for the swine farming industry. Here, a strategy of co-fermentation of DDGS and lignocellulosic feedstocks for production of swine feed was discussed. The potential of the DDGS and lignocellulosic feedstocks as feedstock for fermented pig feed and the complementary relationship between them were described. In order to facilitate the swine feed research in co-fermentation of DDGS and lignocellulosic feedstocks, the relevant studies on strain selection, fermentation conditions, targeted metabolism, product nutrition, as well as the growth and health of swine were collected and critically reviewed. This review proposed an approach for the production of easily digestible and highly nutritious swine feed via co-fermentation of DDGS and lignocellulosic feedstocks, which could provide a guide for cleaner swine farming, relieve stress on the increasing demand of high-value swine feed, and finally support the ever-increasing demand of the pork market.


Assuntos
Ração Animal , Dieta , Animais , Suínos , Fermentação , Ração Animal/análise , Zea mays , Grão Comestível
9.
Sci Total Environ ; 856(Pt 2): 159153, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36195148

RESUMO

Microalgae-based wastewater treatment is particularly advantageous in simultaneous CO2 sequestration and nutrients recovery, and has received increasing recognition and attention in the global context of synergistic pollutants and carbon reduction. However, the fact that microalgae themselves can generate the potent greenhouse gas nitrous oxide (N2O) has been long overlooked, most previous research mainly regarded microalgae as labile organic carbon source or oxygenic approach that interfere bacterial nitrification-denitrification and the concomitant N2O production. This study, therefore, summarized the amount and rate of N2O emission in microalgae-based systems, interpreted in-depth the multiple pathways that lead to NO formation as the key precursor of N2O, and the pathways that transform NO into N2O. Reduction of nitrite could take place in either the cytoplasm or the mitochondria to form NO by a series of enzymes, while the NO could be enzymatically reduced to N2O at the chloroplasts or the mitochondria respectively under light and dark conditions. The influences of abiotic factors on microalgal N2O emission were analyzed, including nitrogen types and concentrations that directly affect the nitrogen transformation routes, illumination and oxygen conditions that regulate the enzymatic activities related to N2O generation, and other factors that indirectly interfere N2O emission via NO regulation. The uncertainty of microalgae-based N2O emission in wastewater treatment scenarios were emphasized, which would be particularly impacted by the complex competition between microalgae and ammonia oxidizing bacteria or nitrite oxidizing bacteria over ammonium or inorganic carbon source. Future studies should put more efforts in improving the compatibility of N2O emission results expressions, and adopting consistent NO detection methods for N2O emission prediction. This review will provide much valuable information on the characteristics and mechanisms of microalgal N2O emission, and arouse more attention to the non-negligible N2O emission that may impair overall greenhouse gas reduction efficiency in microalgae-based wastewater treatment systems.


Assuntos
Gases de Efeito Estufa , Microalgas , Purificação da Água , Óxido Nitroso/análise , Microalgas/metabolismo , Desnitrificação , Nitritos/metabolismo , Gases de Efeito Estufa/metabolismo , Amônia/metabolismo , Nitrificação , Nitrogênio/metabolismo , Bactérias/metabolismo , Carbono/metabolismo , Reatores Biológicos/microbiologia
10.
Bioresour Technol ; 364: 128117, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36244605

RESUMO

Using low strength wastewater for microalgae cultivation is challenged by slow growth and biomass harvesting issue in suspended systems, and growth-promoting effects of phytohormones at currently recommended dosages could neither obtain high enough biomass concentrations nor economic feasibility. This study aims to solve the issues of slow growth, biomass harvest, and phytohormone costs altogether by supplementing low dosage phytohormones in an improved capillary-driven attached cultivation device. The device displayed nutrients-condensing properties, and dosages of indole acetic acid (IAA), 6-benzylaminopurine (6-BA), and salicylic acid (SA) for highest microalgal growth were respectively 10-6 M, 10-6 M, and 10-7 M, being at least one order of magnitude lower than in suspended cultures. SA was most effective in growth-promoting (up to 7.0 g/m2 biomass density) and nutrients uptake (up to 98.6 % from the bulk environment), while IAA was most effective in antioxidative defenses. These results provided new insights in cost-effective and harvesting-convenient microalgae production.

11.
Sci Total Environ ; 852: 158515, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36063957

RESUMO

Microalgae biotechnology is a great candidate for carbon neutralization, wastewater treatment and the sustainable production of biofuels and food. Efficient and cost-effective microalgae production depends on highly coordinating the resources used for algal growth. However, dynamic natural disturbances such as culture temperature and sunlight can lead to the poor coordination and waste of resources. Open ponds are the most commonly used commercial microalgal production systems, and enhanced mixing can significantly increase their productivity, but mixing energy can be seriously wasted due to dynamic disturbances, presenting a hindrance to further reducing production costs. Herein, a smart and precise mixing strategy was developed for open ponds in which a paddle wheel's stirring speed for an open pond was smartly and precisely controlled in real time based on dynamic variations in light intensity and culture temperature. The proposed technology achieved the same biomass productivity of Spirulina platensis (8.37 g m-2 day-1) as a control with a constant high mixing rate under dynamic disturbances while reducing mixing energy inputs by approximately 30 % compared to the control. This study provides a promising method to address serious resource waste and poor coordination due to dynamic natural disturbances, holding great potential for efficient and cost-effective microalgae production.


Assuntos
Microalgas , Lagoas , Biocombustíveis , Análise Custo-Benefício , Biomassa , Carbono , Águas Residuárias
12.
Biotechnol Biofuels Bioprod ; 15(1): 54, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35596223

RESUMO

BACKGROUND: Chloroplast and endoplasmic reticulum (ER)-localized fatty acid (FA) transporters have been reported to play important roles in oil (mainly triacylglycerols, TAG) biosynthesis. However, whether these FA transporters synergistically contribute to lipid accumulation, and their effect on lipid metabolism in microalgae are unknown. RESULTS: Here, we co-overexpressed two chloroplast-localized FA exporters (FAX1 and FAX2) and one ER-localized FA transporter (ABCA2) in Chlamydomonas. Under standard growth conditions, FAX1/FAX2/ABCA2 over-expression lines (OE) accumulated up to twofold more TAG than the parental strain UVM4, and the total amounts of major polyunsaturated FAs (PUFA) in TAG increased by 4.7-fold. In parallel, the total FA contents and major membrane lipids in FAX1/FAX2/ABCA2-OE also significantly increased compared with those in the control lines. Additionally, the total accumulation contribution ratio of PUFA, to total FA and TAG synthesis in FAX1/FAX2/ABCA2-OE, was 54% and 40% higher than that in UVM4, respectively. Consistently, the expression levels of genes directly involved in TAG synthesis, such as type-II diacylglycerol acyltransferases (DGTT1, DGTT3 and DGTT5), and phospholipid:diacylglycerol acyltransferase 1 (PDAT1), significantly increased, and the expression of PGD1 (MGDG-specific lipase) was upregulated in FAX1/FAX2/ABCA2-OE compared to UVM4. CONCLUSION: These results indicate that the increased expression of FAX1/FAX2/ABCA2 has an additive effect on enhancing TAG, total FA and membrane lipid accumulation and accelerates the PUFA remobilization from membrane lipids to TAG by fine-tuning the key genes involved in lipid metabolism under standard growth conditions. Overall, FAX1/FAX2/ABCA2-OE shows better traits for lipid accumulation than the parental line and previously reported individual FA transporter-OE. Our study provides a potential useful strategy to increase the production of FA-derived energy-rich and value-added compounds in microalgae.

13.
Bioresour Technol ; 349: 126868, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35183724

RESUMO

The objective of this study was to investigate the relationship between dissolved organic matter (DOM) and microbial communities during the co-fermentation of distillers dried grains with solubles (DDGS) and sugarcane pith at different oxygen levels. In aerobic fermentation (AF), the content of DOM decreased from 32.61 mg/g to 14.14 mg/g, and decreased from 32.61 mg/g to 30.83 mg/g in anaerobic fermentation (ANF). Phenols and alcohols were consumed first in AF, while lipids and proteins were consumed first in ANF. Degradation rates of cellulose, hemicellulose and lignin in AF (6.67%, 39.93%, 36.50%) were higher than those in ANF (0.69%, 18.36%, 9.12%). Firmicutes, Actinobacteriota and Ascomycota were the main phyla in community. Distance-based redundancy analysis showed that pH, organic matter (OM) and DOM were the main driving factors of microbial community succession.


Assuntos
Microbiota , Saccharum , Ração Animal/análise , Animais , Dieta , Matéria Orgânica Dissolvida , Grão Comestível/química , Fermentação , Oxigênio/metabolismo , Rúmen/metabolismo , Zea mays
14.
Trends Biotechnol ; 40(2): 180-193, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34325913

RESUMO

Commercial applications of microalgae for biochemicals and fuels are hampered by their high production costs, and the use of conventional carbon supplies is a key reason. Bicarbonate has been proposed as an alternative carbon source due to its potential advantages in lower carbon supply costs, convenience for photobioreactor development, biomass harvesting, and labor and energy savings. We review recent progress in bicarbonate-based microalgae cultivation, which validated previous assumptions, suggested further advantages, and demonstrated potential to significantly reduce production cost. Future research should focus on improving production efficiency and reducing energy inputs, including optimizing photobioreactor design, comprehensive utilization of natural power, and automation in production systems.


Assuntos
Microalgas , Bicarbonatos , Biomassa , Carbono , Fotobiorreatores
15.
Sci Total Environ ; 813: 151891, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34826467

RESUMO

Global antibiotics consumption has been on the rise, leading to increased antibiotics release into the environment, which threatens public health by selecting for antibiotic resistant bacteria and resistance genes, and may endanger the entire ecosystem by impairing primary production. Conventional bacteria-based treatment methods are only moderately effective in antibiotics removal, while abiotic approaches such as advanced oxidation and adsorption are costly and energy/chemical intensive, and may cause secondary pollution. Considered as a promising alternative, microalgae-based technology requires no extra chemical addition, and can realize tremendous CO2 mitigation accompanying growth related pollutants removal. Previous studies on microalgae-based antibiotics removal, however, focused more on the removal performances than on the removal mechanisms, and few studies have concerned the toxicity of antibiotics to microalgae during the treatment process. Yet understanding the removal mechanisms can be of great help for targeted microalgae-based antibiotics removal performances improvement. Moreover, most of the removal and toxicity studies were carried out using environment-irrelevant high concentrations of antibiotics, leading to reduced guidance for real-world situations. Integrating the two research fields can be helpful for both improving antibiotics removal and avoiding toxicological effects to primary producers by the residual pollutants. This study, therefore, aims to build a link connecting the occurrence of antibiotics in the aquatic environment, the removal of antibiotics by microalgae-based processes, and the toxicity of antibiotics to microalgae. Distribution of various categories of antibiotics in different water environments were summarized, together with the antibiotics removal mechanisms and performances in microalgae-based systems, and the toxicological mechanisms and toxicity of antibiotics to microalgae after either short-term or long-term exposure. Current research gaps and future prospects were also analyzed. The review could provide much valuable information to the related fields, and provoke interesting thoughts on integrating microalgae-based antibiotics removal research and toxicity research on the basis of environmentally relevant concentrations.


Assuntos
Microalgas , Poluentes Químicos da Água , Antibacterianos/toxicidade , Bactérias , Ecossistema , Águas Residuárias , Poluentes Químicos da Água/toxicidade
16.
Bioresour Bioprocess ; 9(1): 4, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38647742

RESUMO

Dunaliella salina is a green microalga with the great potential to generate natural ß-carotene. However, the corresponding mathematical models to guide optimized production of ß-carotene in Dunaliella salina (D. salina) are not yet available. In this study, dynamic models were proposed to simulate effects of environmental factors on cell growth and ß-carotene production in D. salina using online monitoring system. Moreover, the identification model of the parameter variables was established, and an adaptive particle swarm optimization algorithm based on parameter sensitivity analysis was constructed to solve the premature problem of particle swarm algorithm. The proposed kinetic model is characterized by high accuracy and predictability through experimental verification, which indicates its competence for future process design, control, and optimization. Based on the model established in this study, the optimal environmental factors for both ß-carotene production and microalgae growth were identified. The approaches created are potentially useful for microalga Dunaliella salina cultivation and high-value ß-carotene production.

17.
Sci Total Environ ; 779: 146445, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34030268

RESUMO

High cost of microalgal biofuel is caused by all the steps in current technology, including cultivation, harvesting, lipid extraction, biofuel processing and wastewater and waste treatment. This study aims to systematically reduce these costs with one integrated process, in which carbonate is used for cell rupture, lipid extraction and biodiesel processing, and then recycled for CO2 absorption and carbon supply for a new round of algae cultivation. To reach this goal, carbonate-heating treatment with N, N' - dibutylurea which can enhance cell disruption were used for cell-wall breaking of wet Neochloris oleoabundans (UTEX 1185) biomass. Lipid extraction was fulfilled with carbonate/ethanol aqueous two phase extraction method and residual carbonate with wastewater from bottom phase was recycled to absorb CO2 to generate bicarbonate for algal cultivation with fresh medium. Taking into comprehensive consideration of cell disruption efficiency, partition coefficient, and lipid recovery, the condition of cell disruption and lipid extraction was set at 90 °C, 100 min reaction time, 1:7.5 DBU:H2O (w/w) ratio, 1:3 Na2CO3:H2O (w/w) ratio, and 9% (w/wT) ethanol concentration. The results showed that carbonate-heating treatment of wet N. oleoabundans biomass resulted in up to 90.7% cell disruption efficiency. The lipid recovery rate in carbonate/ethanol system was up to 97.9%, and the final biodiesel production was 1.30 times of that with Soxhlet method. Utilization of the waste broth after CO2 absorption with the content of 4% (v/vT) in the medium for new batch of algae cultivation resulted in biomass concentration of 1.68 g/L. The corresponding total fatty acids production was 0.35 g/L, which was 1.63 fold of that with fresh medium. This study firstly proved the feasibility of using carbonate for lipid extraction and biodiesel production and recycle waste carbonate for carbon re-supply during algae cultivation.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Dióxido de Carbono , Carbonatos , Lipídeos , Águas Residuárias
18.
Bioresour Bioprocess ; 8(1): 104, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-38650246

RESUMO

Accumulation of ß-carotene in Dunaliella salina is highly dependent on light exposure intensity and duration, but quantitative analysis on photon numbers received per cell for triggering ß-carotene accumulation is not available so far. In this study, experiment results showed that significant ß-carotene accumulation occurred after at least 8 h illumination at 400 µmol photons·m-2·s-1. To quantify the average number of photons received per cell, correlations of light attenuation with light path, biomass concentration, and ß-carotene content were, respectively, established using both Lambert-Beer and Cornet models, and the latter provided better simulation. Using Cornet model, average number of photons received per cell (APRPC) was calculated and proposed as a parameter for ß-carotene accumulation, and constant APRPC was maintained by adjusting average irradiance based on cell concentration and carotenoids content changes during the whole induction period. It was found that once APRPC reached 0.7 µmol photons cell-1, ß-carotene accumulation was triggered, and it was saturated at 9.9 µmol photons cell-1. This study showed that APRPC can be used as an important parameter to precisely simulate and control ß-carotene production by D. salina.

19.
Appl Biochem Biotechnol ; 192(4): 1163-1175, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32700201

RESUMO

Schizochytrium limacinum SR21 is an important strain for industrial production of docosahexaenoic acid (DHA), which is an important omega-3 fatty acid used in the nutraceutical and food industry. However, the high cost of carbon sources has limited its further application in the market with much larger volume, such as animal feed for aquaculture, poultry, and livestock. To seek low-cost carbon source, acetic acid is tested in the present study. The effect of different factors, including initial carbon source concentration, pH, aeration rate, and nitrogen sources, on biomass, lipid, and DHA production were tested. With optimized culture conditions, the biomass concentration of 146 g/L, total fatty acids (TFAs) of 82.3 g/L, and DHA content of 23.0 g/L were achieved with a pH-auxostat fed-batch cultivation. These results suggested that acetic acid is a promising feedstock for the low-cost production of DHA. Graphical Abstract.


Assuntos
Ácido Acético/farmacologia , Técnicas de Cultura Celular por Lotes , Eucariotos/efeitos dos fármacos , Eucariotos/crescimento & desenvolvimento , Biomassa , Ácidos Docosa-Hexaenoicos/biossíntese , Eucariotos/metabolismo , Concentração de Íons de Hidrogênio , Lipídeos/biossíntese , Nitrogênio/metabolismo
20.
Sci Total Environ ; 738: 139439, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531581

RESUMO

Cultivation of microalgae on ocean provides a promising way to produce massive biomass without utilizing limited land space, and using seawater as culture medium can avoid consumption of valuable fresh water. Bicarbonate is proved as a better approach for carbon supply in microalgae cultivation, but Ca2+ and Mg2+ in seawater is subjected to precipitate with carbonate derived from it. In this study, cultivation with this medium for a marine Chlorella sp. resulted in productivity of 0.470 g L-1 day-1, despite of continual precipitation caused by increased pH due to bicarbonate consumption. Actually, this precipitation is favorable, since it can work as a flocculation harvesting method for microalgae. The highest flocculation efficiency of 98.9 ± 0.0% was observed in cultures with 7.0 g L-1 NaHCO3, which was higher than that of cultures without bicarbonate (44.1 ± 0.2%). Additionally, the spent medium after flocculation supported better growth (1.60 ± 0.0 g L-1) than the fresh medium (1.26 ± 0.0 g L-1). Outdoor cultivation with floating photobioreactor on ocean resulted in the productivity of 0.190 g L-1 day-1, which was higher than that in land-based culture systems. The floating system also benefited from better temperature control with range from 20.6 to 37.2 °C, due to solar heating and surrounding water cooling. These results showed feasibility of efficient microalgae biomass production with fully utilizing of ocean resources, including culture medium preparation and temperature control with seawater, as well as wave energy for mixing, holding great potential to produce massive biomass to support sustainable development of human society.


Assuntos
Chlorella , Microalgas , Bicarbonatos , Biomassa , Oceanos e Mares , Fotobiorreatores , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA