Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38895282

RESUMO

Hypertrophy Cardiomyopathy (HCM) is the most prevalent hereditary cardiovascular disease - affecting >1:500 individuals. Advanced forms of HCM clinically present with hypercontractility, hypertrophy and fibrosis. Several single-point mutations in b-myosin heavy chain (MYH7) have been associated with HCM and increased contractility at the organ level. Different MYH7 mutations have resulted in increased, decreased, or unchanged force production at the molecular level. Yet, how these molecular kinetics link to cell and tissue pathogenesis remains unclear. The Hippo Pathway, specifically its effector molecule YAP, has been demonstrated to be reactivated in pathological hypertrophic growth. We hypothesized that changes in force production (intrinsically or extrinsically) directly alter the homeostatic mechano-signaling of the Hippo pathway through changes in stresses on the nucleus. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), we asked whether homeostatic mechanical signaling through the canonical growth regulator, YAP, is altered 1) by changes in the biomechanics of HCM mutant cardiomyocytes and 2) by alterations in the mechanical environment. We use genetically edited hiPSC-CM with point mutations in MYH7 associated with HCM, and their matched controls, combined with micropatterned traction force microscopy substrates to confirm the hypercontractile phenotype in MYH7 mutants. We next modulate contractility in healthy and disease hiPSC-CMs by treatment with positive and negative inotropic drugs and demonstrate a correlative relationship between contractility and YAP activity. We further demonstrate the activation of YAP in both HCM mutants and healthy hiPSC-CMs treated with contractility modulators is through enhanced nuclear deformation. We conclude that the overactivation of YAP, possibly initiated and driven by hypercontractility, correlates with excessive CCN2 secretion (connective tissue growth factor), enhancing cardiac fibroblast/myofibroblast transition and production of known hypertrophic signaling molecule TGFß. Our study suggests YAP being an indirect player in the initiation of hypertrophic growth and fibrosis in HCM. Our results provide new insights into HCM progression and bring forth a testbed for therapeutic options in treating HCM.

2.
Nat Struct Mol Biol ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671229

RESUMO

Inheritance of 5-methylcytosine from one cell generation to the next by DNA methyltransferase 1 (DNMT1) plays a key role in regulating cellular identity. While recent work has shown that the activity of DNMT1 is imprecise, it remains unclear how the fidelity of DNMT1 is tuned in different genomic and cell state contexts. Here we describe Dyad-seq, a method to quantify the genome-wide methylation status of cytosines at the resolution of individual CpG dinucleotides to find that the fidelity of DNMT1-mediated maintenance methylation is related to the local density of DNA methylation and the landscape of histone modifications. To gain deeper insights into methylation/demethylation turnover dynamics, we first extended Dyad-seq to quantify all combinations of 5-methylcytosine and 5-hydroxymethylcytosine at individual CpG dyads. Next, to understand how cell state transitions impact maintenance methylation, we scaled the method down to jointly profile genome-wide methylation levels, maintenance methylation fidelity and the transcriptome from single cells (scDyad&T-seq). Using scDyad&T-seq, we demonstrate that, while distinct cell states can substantially impact the activity of the maintenance methylation machinery, locally there exists an intrinsic relationship between DNA methylation density, histone modifications and DNMT1-mediated maintenance methylation fidelity that is independent of cell state.

3.
Cell Syst ; 14(7): 551-562.e5, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37473728

RESUMO

The integrated stress response (ISR) is a conserved signaling network that detects aberrations and computes cellular responses. Dissecting these computations has been difficult because physical and chemical inducers of stress activate multiple parallel pathways. To overcome this challenge, we engineered a photo-switchable control over the ISR sensor kinase PKR (opto-PKR), enabling virtual, on-target activation. Using light to control opto-PKR dynamics, we traced information flow through the transcriptome and for key downstream ISR effectors. Our analyses revealed a biphasic, proportional transcriptional response with two dynamic modes, transient and gradual, that correspond to adaptive and terminal outcomes. We then constructed an ordinary differential equation (ODE) model of the ISR, which demonstrated the dependence of future stress responses on past stress. Finally, we tested our model using high-throughput light-delivery to map the stress memory landscape. Our results demonstrate that cells encode information in stress levels, durations, and the timing between encounters. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Optogenética , Transdução de Sinais , Transdução de Sinais/genética , Transcriptoma
4.
bioRxiv ; 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37205524

RESUMO

Transmission of 5-methylcytosine (5mC) from one cell generation to the next plays a key role in regulating cellular identity in mammalian development and diseases. While recent work has shown that the activity of DNMT1, the protein responsible for the stable inheritance of 5mC from mother to daughter cells, is imprecise; it remains unclear how the fidelity of DNMT1 is tuned in different genomic and cell state contexts. Here we describe Dyad-seq, a method that combines enzymatic detection of modified cytosines with nucleobase conversion techniques to quantify the genome-wide methylation status of cytosines at the resolution of individual CpG dinucleotides. We find that the fidelity of DNMT1-mediated maintenance methylation is directly related to the local density of DNA methylation, and for genomic regions that are lowly methylated, histone modifications can dramatically alter the maintenance methylation activity. Further, to gain deeper insights into the methylation and demethylation turnover dynamics, we extended Dyad-seq to quantify all combinations of 5mC and 5-hydroxymethylcytosine (5hmC) at individual CpG dyads to show that TET proteins preferentially hydroxymethylate only one of the two 5mC sites in a symmetrically methylated CpG dyad rather than sequentially convert both 5mC to 5hmC. To understand how cell state transitions impact DNMT1-mediated maintenance methylation, we scaled the method down and combined it with the measurement of mRNA to simultaneously quantify genome-wide methylation levels, maintenance methylation fidelity and the transcriptome from the same cell (scDyad&T-seq). Applying scDyad&T-seq to mouse embryonic stem cells transitioning from serum to 2i conditions, we observe dramatic and heterogenous demethylation and the emergence of transcriptionally distinct subpopulations that are closely linked to the cell-to-cell variability in loss of DNMT1-mediated maintenance methylation activity, with regions of the genome that escape 5mC reprogramming retaining high levels of maintenance methylation fidelity. Overall, our results demonstrate that while distinct cell states can substantially impact the genome-wide activity of the DNA methylation maintenance machinery, locally there exists an intrinsic relationship between DNA methylation density, histone modifications and DNMT1-mediated maintenance methylation fidelity that is independent of cell state.

5.
STAR Protoc ; 2(4): 101016, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34950891

RESUMO

The asymmetric distribution of 5-hydroxymethylcytosine (5hmC) between two DNA strands of a chromosome enables endogenous reconstruction of cellular lineages at an individual-cell-division resolution. Further, when integrated with data on genomic variants to infer clonal lineages, this combinatorial information accurately reconstructs larger lineage trees. Here, we provide a detailed protocol for single-cell 5-hydroxymethylcytosine and genomic DNA sequencing (scH&G-seq) to simultaneously quantify 5hmC and genomic DNA from the same cell to reconstruct lineage trees at a single-cell-division resolution. For complete details on the use and execution of this protocol, please refer to Wangsanuwat et al., 2021.


Assuntos
5-Metilcitosina/análogos & derivados , DNA/genética , Análise de Sequência de DNA/métodos , Análise de Célula Única/métodos , 5-Metilcitosina/química , Divisão Celular , Linhagem Celular , Biologia Computacional/métodos , Humanos
6.
Cell Rep Methods ; 1(4)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34590075

RESUMO

Lineage reconstruction is central to understanding tissue development and maintenance. To overcome the limitations of current techniques that typically reconstruct clonal trees using genetically encoded reporters, we report scPECLR, a probabilistic algorithm to endogenously infer lineage trees at a single-cell-division resolution by using 5-hydroxymethylcytosine (5hmC). When applied to 8-cell pre-implantation mouse embryos, scPECLR predicts the full lineage tree with greater than 95% accuracy. In addition, we developed scH&G-seq to sequence both 5hmC and genomic DNA from the same cell. Given that genomic DNA sequencing yields information on both copy number variations and single-nucleotide polymorphisms, when combined with scPECLR it enables more accurate lineage reconstruction of larger trees. Finally, we show that scPECLR can also be used to map chromosome strand segregation patterns during cell division, thereby providing a strategy to test the "immortal strand" hypothesis. Thus, scPECLR provides a generalized method to endogenously reconstruct lineage trees at an individual-cell-division resolution.


Assuntos
Variações do Número de Cópias de DNA , DNA , Camundongos , Animais , Análise de Sequência de DNA/métodos , DNA/genética , Genômica
7.
Nat Commun ; 12(1): 1286, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627650

RESUMO

DNA methylation (5mC) is central to cellular identity. The global erasure of 5mC from the parental genomes during preimplantation mammalian development is critical to reset the methylome of gametes to the cells in the blastocyst. While active and passive modes of demethylation have both been suggested to play a role in this process, the relative contribution of these two mechanisms to 5mC erasure remains unclear. Here, we report a single-cell method (scMspJI-seq) that enables strand-specific quantification of 5mC, allowing us to systematically probe the dynamics of global demethylation. When applied to mouse embryonic stem cells, we identified substantial cell-to-cell strand-specific 5mC heterogeneity, with a small group of cells displaying asymmetric levels of 5mCpG between the two DNA strands of a chromosome suggesting loss of maintenance methylation. Next, in preimplantation mouse embryos, we discovered that methylation maintenance is active till the 16-cell stage followed by passive demethylation in a fraction of cells within the early blastocyst at the 32-cell stage of development. Finally, human preimplantation embryos qualitatively show temporally delayed yet similar demethylation dynamics as mouse embryos. Collectively, these results demonstrate that scMspJI-seq is a sensitive and cost-effective method to map the strand-specific genome-wide patterns of 5mC in single cells.


Assuntos
Desmetilação do DNA , Metilação de DNA/fisiologia , Animais , Blastocisto/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/deficiência , DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA/genética , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Humanos , Camundongos , Camundongos Knockout , Gravidez
8.
J Endourol ; 35(5): 657-662, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33198488

RESUMO

Objectives: To analyze medications used to treat urinary symptoms in patients before and after prostatic urethral lift (PUL) and determine if there are any significant relationships between several patient factors and onset of overactive bladder (OAB) symptoms requiring treatment. Methods: A retrospective chart review of 226 patients who underwent PUL was performed. Data were collected on age, urinary medications, voiding questionnaires, and prostate volume from 6 months before to 6 months after the intervention. Patients were broken up into groups for analysis with age <60 age (group 1), age 60-75 years (group 2), and age >75 years (group 3). A t-test was used to obtain p-values of the changes in questionnaire answers and urinary medication use after the procedure. To look for significant linear correlations between variables, a Pearson correlation was obtained and a randomization test was performed to obtain p-values. Results: Significant International Prostate Symptom Score (IPSS) and Quality of Life (QOL) improvements were noted in all groups (p < 0.01). Total medication and Alpha-blocker decrease was significantly correlated with age (p = 0.02 and p < 0.01, respectively). Older groups had a significant increase in Beta 3 agonist usage, with a significant decrease in usage in younger patients preoperatively. However, no significant linear increase was noted with age (p = 0.147). Prostate volume correlated with preoperative alpha-blocker use (p = 0.04). Conclusions: Older patients appear to have a higher incidence of medical treatment for de novo OAB symptoms after PUL. Prolonged medical therapy may delay surgical intervention, and intervention at an earlier age, unrelated to prostate volume, is postulated to be preventative of these symptoms. Further studies are needed to delineate long-term effects of medications, obstruction, and environmental factors that may lead to OAB after the obstruction is treated as well as the effect of early intervention on obstruction.


Assuntos
Hiperplasia Prostática , Qualidade de Vida , Idoso , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento
9.
Nat Protoc ; 15(6): 1922-1953, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32350457

RESUMO

Protein-DNA interactions are essential for establishing cell type-specific chromatin architecture and gene expression. We recently developed scDam&T-seq, a multi-omics method that can simultaneously quantify protein-DNA interactions and the transcriptome in single cells. The method effectively combines two existing methods: DNA adenine methyltransferase identification (DamID) and CEL-Seq2. DamID works through the tethering of a protein of interest (POI) to the Escherichia coli DNA adenine methyltransferase (Dam). Upon expression of this fusion protein, DNA in proximity to the POI is methylated by Dam and can be selectively digested and amplified. CEL-Seq2, in contrast, makes use of poly-dT primers to reverse transcribe mRNA, followed by linear amplification through in vitro transcription. scDam&T-seq is the first technique capable of providing a combined readout of protein-DNA contact and transcription from single-cell samples. Once suitable cell lines have been established, the protocol can be completed in 5 d, with a throughput of hundreds to thousands of cells. The processing of raw sequencing data takes an additional 1-2 d. Our method can be used to understand the transcriptional changes a cell undergoes upon the DNA binding of a POI. It can be performed in any laboratory with access to FACS, robotic and high-throughput-sequencing facilities.


Assuntos
DNA/metabolismo , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Proteínas/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , DNA/genética , Metilação de DNA , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Camundongos , Ligação Proteica , Proteínas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de DNA/métodos , Análise de Célula Única/métodos , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Transcriptoma
10.
Stem Cell Reports ; 14(3): 433-446, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32059791

RESUMO

The development of an in vitro system in which human primordial germ cell-like cells (hPGCLCs) are generated from human pluripotent stem cells (hPSCs) has been invaluable to further our understanding of human primordial germ cell (hPGC) specification. However, the means to evaluate the next fundamental steps in germ cell development have not been well established. In this study we describe a two dimensional extended culture system that promotes proliferation of specified hPGCLCs, without reversion to a pluripotent state. We demonstrate that hPGCLCs in extended culture undergo partial epigenetic reprogramming, mirroring events described in hPGCs in vivo, including a genome-wide reduction in DNA methylation and maintenance of depleted H3K9me2. This extended culture system provides a new approach for expanding the number of hPGCLCs for downstream technologies, including transplantation, molecular screening, or possibly the differentiation of hPGCLCs into gametes by in vitro gametogenesis.


Assuntos
Técnicas de Cultura de Células/métodos , Metilação de DNA , Células Germinativas/citologia , Proliferação de Células , Autorrenovação Celular , Sobrevivência Celular , Células Cultivadas , Montagem e Desmontagem da Cromatina , Desmetilação do DNA , Metilação de DNA/genética , Histonas/metabolismo , Humanos , Transcrição Gênica , Transcriptoma/genética
11.
PLoS Biol ; 17(9): e3000453, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31557150

RESUMO

The link between single-cell variation and population-level fate choices lacks a mechanistic explanation despite extensive observations of gene expression and epigenetic variation among individual cells. Here, we found that single human embryonic stem cells (hESCs) have different and biased differentiation potentials toward either neuroectoderm or mesendoderm depending on their G1 lengths before the onset of differentiation. Single-cell variation in G1 length operates in a dynamic equilibrium that establishes a G1 length probability distribution for a population of hESCs and predicts differentiation outcome toward neuroectoderm or mesendoderm lineages. Although sister stem cells generally share G1 lengths, a variable proportion of cells have asymmetric G1 lengths, which maintains the population dispersion. Environmental Wingless-INT (WNT) levels can control the G1 length distribution, apparently as a means of priming the fate of hESC populations once they undergo differentiation. As a downstream mechanism, global 5-hydroxymethylcytosine levels are regulated by G1 length and thereby link G1 length to differentiation outcomes of hESCs. Overall, our findings suggest that intrapopulation heterogeneity in G1 length underlies the pluripotent differentiation potential of stem cell populations.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/fisiologia , Fase G1 , Proteínas Wnt/fisiologia , Linhagem Celular , Humanos
12.
Nat Biotechnol ; 37(7): 766-772, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209373

RESUMO

Protein-DNA interactions are critical to the regulation of gene expression, but it remains challenging to define how cell-to-cell heterogeneity in protein-DNA binding influences gene expression variability. Here we report a method for the simultaneous quantification of protein-DNA contacts by combining single-cell DNA adenine methyltransferase identification (DamID) with messenger RNA sequencing of the same cell (scDam&T-seq). We apply scDam&T-seq to reveal how genome-lamina contacts or chromatin accessibility correlate with gene expression in individual cells. Furthermore, we provide single-cell genome-wide interaction data on a polycomb-group protein, RING1B, and the associated transcriptome. Our results show that scDam&T-seq is sensitive enough to distinguish mouse embryonic stem cells cultured under different conditions and their different chromatin landscapes. Our method will enable the analysis of protein-mediated mechanisms that regulate cell-type-specific transcriptional programs in heterogeneous tissues.


Assuntos
Análise de Célula Única/métodos , Transcriptoma , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Ligação Proteica
13.
Nanoscale ; 11(12): 5693-5704, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30865198

RESUMO

Controlling the interactions between cells and viruses is critical for treating infected patients, preventing viral infections, and improving virus-based therapeutics. Chemical methods using small molecules and biological methods using proteins and nucleic acids are employed for achieving this control, albeit with limitations. We found, for the first time, that retroviral DNA integration patterns in the human genome, the result of complicated interactions between cells and viruses, can be engineered by adapting cells to the defined nanotopography of silica bead monolayers. Compared with cells on a flat glass surface, cells on beads with the highest curvature harbored retroviral DNAs at genomic sites near transcriptional start sites and CpG islands during infections at more than 50% higher frequencies. Furthermore, cells on the same type of bead layers contained retroviral DNAs in the genomic regions near cis-regulatory elements at frequencies that were 2.6-fold higher than that of cells on flat glass surfaces. Systems-level genetic network analysis showed that for cells on nanobeads with the highest curvature, the genes that would be affected by cis-regulatory elements near the retroviral integration sites perform biological functions related to chromatin structure and antiviral activities. Our unexpected observations suggest that novel engineering approaches based on materials with specific nanotopography can improve control over viral events.


Assuntos
DNA Viral/metabolismo , Vírus da Leucemia Murina/genética , Nanotecnologia/métodos , Ilhas de CpG , Redes Reguladoras de Genes , Genoma Humano , Células HEK293 , Humanos , Nanoestruturas/química , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA