Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Waste Manag ; 136: 143-152, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34666296

RESUMO

Anaerobic digestion produces large quantities of digestate as a by-product, which can potentially be applied as an organic fertilizer, but untreated anaerobic digestate (AD) may contain phytotoxins and the large volume of AD makes transportation and storage difficult. This study explored two relatively inexpensive processing methods to improve the agronomic performance of AD as a fertilizer via vegetable cultivation experiments. We first investigated the effect of dilution on AD's performance using four leafy vegetables (Chinese spinach, water spinach, Chinese cabbage and lettuce). The optimal concentrations of the AD were 20-40% (v/v in 250 mL applications per single-plant pot) for all four vegetables based on shoot fresh weight and comparable to the control treatment using commercial fertilizer. AD application also introduced Synergistetes bacteria into the growing medium, but the overall bacterial diversity and composition were similar to those of the control treatment. Considering the nutrient separation in the liquid and solid fractions of AD and the need to reduce the volume, we then experimented with the recovery of nutrients from both the liquid and solid fractions by filtering AD using two types of wood-based biochar (100 g biochar: 1 L AD) before applying the AD-biochar residues as side dressing at 1% (w/w). Both types of biochar achieved yields comparable to the treatment using a commercial fertilizer for the three vegetables tested (kale, lettuce and rocket salad). Our results show that dilution and biochar filtration can improve the agronomic performance of AD, making it a sustainable substitute for commercial fertilizer.


Assuntos
Carvão Vegetal , Fertilizantes , Anaerobiose , Verduras
2.
Waste Manag ; 130: 155-166, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34090239

RESUMO

Black soldier fly (BSF) larval bioconversion can recycle nutrients in organic wastes into larval biomass and frass. While the frass has been commonly marketed as a soil amendment, its usefulness in soilless cultivation remains largely unexplored. Growth experiments were conducted to investigate the effectiveness of surplus food-derived and okara-derived BSF larval frass as an incorporated compost, side-dress fertilizer and frass-tea drench for the cultivation of pak choi and lettuce in waste-wood derived biochar growing media. Pak choi yields from treatments with surplus food-derived frass and biochar at a 10:90 (v/v) ratio and inorganic fertilizer were comparable to those of the control which consisted of soil, peat-based compost and inorganic fertilizer. However, yields decreased with increasing frass incorporation rates owing to high salinity and potentially low oxygen conditions in the growing media. When used as a fertilizer on biochar-coir growing media, the direct application of frass as a side-dress fertilizer was 1.6-6.8 times more effective in promoting lettuce growth than the application as a frass-tea drench. Frass fertilizers derived from surplus food outperformed those derived from okara by 1.3-5.3 times. Lettuce yields were not significantly different between the treatment with surplus food-derived frass applied as a side-dress fertilizer and the control of liquid inorganic fertilizer. Variations in fertilizing potential were attributed to nutrient availability and the presence of plant growth promoting microbes in the growing media. BSF larval frass derived from food waste shows promise in partially replacing unsustainable agricultural inputs for leafy vegetable cultivation, including soil and inorganic fertilizers.


Assuntos
Compostagem , Dípteros , Eliminação de Resíduos , Animais , Carvão Vegetal , Fertilizantes , Larva , Solo , Chá , Verduras
3.
J Environ Manage ; 286: 112163, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33618320

RESUMO

Bioconversion of organic waste by the black soldier fly (BSF) larva yields a by-product commonly known as 'frass'. Although BSF larval frass has often been marketed as a biofertilizer, few studies have evaluated this claim. In this study, BSF larvae reared on a pure okara diet achieved an 85% waste reduction in the fresh weight of the okara. Subsequently, the frass was mixed with soil at concentrations of 10, 20, and 30% (vol/vol), and used to cultivate lettuce plants. At 10% concentration, the lettuce plants had biomasses comparable to those of the controls. Higher frass concentrations stunted the growth of the lettuce, likely because of the low C:N ratio of larval frass resulting from the rapid mineralization of nutrients. Larval frass was also found to be able to provide sufficient nutrients for lettuce growth as fertilizer application was only necessary after the first growth cycle, suggesting its suitability as a soil amendment. Analyses of the microbial community of all the growing media showed that the growth medium treatments with BSF larval frass tended to have a lower number of microbial species than the controls. Inherently higher micronutrient levels present in the frass resulted in the growth of lettuce plants. More importantly, the microbial analysis revealed that common foodborne pathogens were absent in the BSF larval frass and elemental analysis also indicated no heavy metal pollutants present. Overall, BSF larval frass was found to be a suitable soil amendment and more in-depth studies could facilitate its sensible use in agriculture.


Assuntos
Dípteros , Solo , Animais , Fertilizantes , Larva , Nutrientes
4.
Sci Total Environ ; 727: 138742, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32498194

RESUMO

With possible food crises looming in the near future, urban farming, including small-scale community and home gardens for home consumption, presents a promising option to improve food security in cities. These small-scale farms and gardens often use planter boxes and raised beds filled with lightweight soil or potting mixes. While previous studies on biochar focused on its application on large-scale contiguous farmlands, this study aimed to evaluate the suitability of biochar as a partial soil substitute to produce a durable and lightweight soil-biochar mix for small-scale urban farms. The effects of biochar on the chemical properties of the soil-biochar mix, crop yield and, particularly, crop nutrients and metabolic content were assessed. A germination test using pak choi seeds (Brassica rapa L. cultivar group Pak choi, Green-Petioled Form) showed that the biochar contained phytostimulants. Through a nursery pot experiment over four growth cycles, biochar treatments performed better than pure soil at retaining water-soluble NO3- and K+ ions, but were worse at retaining PO43- ions. Nonetheless, despite its positive effect on soil NO3- retention, biochar application did not improve crop yield significantly when the application rate varied from 0% to 60% (v/v). Untargeted metabolomic analyses showed that biochar application may increase the production of carbohydrates and certain flavonoids and glucosinolates. The results of this study showed that biochar can potentially be used to improve pak choi nutritional values and applied in large quantity to obtain a lightweight soil mix for urban farming.


Assuntos
Brassica rapa , Solo , Agricultura , Carvão Vegetal , Nutrientes
5.
Sci Total Environ ; 688: 398-408, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31247483

RESUMO

Elevated levels of airborne particulate matter (PM) pose health risks to populations living in many cities worldwide. To remediate the impact of air pollution, urban greening has been increasingly explored as a possible way to remove PM from the surroundings. However, existing research focuses mainly on species-specific assessments within temperate climates that may not necessarily grow outside of their local regions. To address sampling limitations associated with the great species diversity in the tropics, our study quantified three key functional traits-leaf hairiness, average leaf area (ALA) and specific leaf area (SLA)-each spanning a wide range of values across 20 tropical species. Wind-tunnel experiments were used to assess surface deposition velocity on leaves; the size fractions PM10 and PM2.5 were measured through multiple rounds of filtration and gravimetric analysis. The effects of upper- and lower-surfaces of leaves on deposition velocity and their interactions with hairiness were also investigated. Results show that greater upper-surface hairiness and a low SLA were consistent predictors of higher deposition velocity for both PM-size fractions. Hairs on leaves serve as obstacles while low SLA tends to be associated with smaller and thicker leaves, together favoring the deposition and retention of PM. The possible mechanisms behind important plant traits and their interactions are discussed. By testing quantifiable effects of specific plant traits, we provide generalizable findings that may be applied to urban greening efforts. Future work to consider other gaseous pollutants and plant-scale effects can help ensure a more comprehensive evaluation of plant suitability for pollutant mitigation.


Assuntos
Poluentes Atmosféricos/análise , Biodegradação Ambiental , Material Particulado/análise , Poluição do Ar , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA