Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Adv Healthc Mater ; : e2400237, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691819

RESUMO

Food allergy is a prevalent, potentially deadly disease caused by inadvertent sensitization to benign food antigens. Pathogenic Th2 cells are a major driver for disease, and allergen-specific immunotherapies (AIT) aim to increase the allergen threshold required to elicit severe allergic symptoms. However, the majority of AIT approaches require lengthy treatments and convey transient disease suppression, likely due to insufficient targeting of pathogenic Th2 responses. Here, the ability of allergen-encapsulating nanoparticles to directly suppress pathogenic Th2 responses and reactivity is investigated in a mouse model of food allergy. NPs associate with pro-tolerogenic antigen presenting cells, provoking accumulation of antigen-specific, functionally suppressive regulatory T cells in the small intestine lamina propria. Two intravenous doses of allergen encapsulated in poly(lactide-co-glycolide) nanoparticles (NPs) significantly reduces oral food challenge (OFC)-induced anaphylaxis. Importantly, NP treatment alters the fates of pathogenic allergen-specific Th2 cells, reprogramming these cells toward CD25+FoxP3+ regulatory and CD73+FR4+ anergic phenotypes. NP-mediated reductions in the frequency of effector cells in the gut and mast cell degranulation following OFC are also demonstrated. These studies reveal mechanisms by which an allergen-encapsulating NP therapy and, more broadly, allergen-specific immunotherapies, can rapidly attenuate allergic responses by targeting pathogenic Th2 cells.

2.
Sci Adv ; 8(40): eabo8043, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36197969

RESUMO

The long-term survival of patients with advanced urothelial carcinoma (UCa) is limited because of innate resistance to treatment. We identified elevated expression of the histone methyltransferase EZH2 as a hallmark of aggressive UCa and hypothesized that EZH2 inhibition, via a small-molecule catalytic inhibitor, might have antitumor effects in UCa. Here, in a carcinogen-induced mouse bladder cancer model, a reduction in tumor progression and an increase in immune infiltration upon EZH2 inhibition were observed. Treatment of mice with EZH2i causes an increase in MHC class II expression in the urothelium and can activate infiltrating T cells. Unexpectedly, we found that the lack of an intact adaptive immune system completely abolishes the antitumor effects induced by EZH2 catalytic inhibition. These findings show that immune evasion is the only important determinant for the efficacy of EZH2 catalytic inhibition treatment in a UCa model.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Animais , Carcinógenos , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histona Metiltransferases , Camundongos , Neoplasias da Bexiga Urinária/metabolismo
3.
Front Immunol ; 13: 887649, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059473

RESUMO

Cancer treatment utilizing infusion therapies to enhance the patient's own immune response against the tumor have shown significant functionality in a small subpopulation of patients. Additionally, advances have been made in the utilization of nanotechnology for the treatment of disease. We have previously reported the potent effects of 3-4 daily intravenous infusions of immune modifying poly(lactic-co-glycolic acid) (PLGA) nanoparticles (IMPs; named ONP-302) for the amelioration of acute inflammatory diseases by targeting myeloid cells. The present studies describe a novel use for ONP-302, employing an altered dosing scheme to reprogram myeloid cells resulting in significant enhancement of tumor immunity. ONP-302 infusion decreased tumor growth via the activation of the cGAS/STING pathway within myeloid cells, and subsequently increased NK cell activation via an IL-15-dependent mechanism. Additionally, ONP-302 treatment increased PD-1/PD-L1 expression in the tumor microenvironment, thereby allowing for functionality of anti-PD-1 for treatment in the B16.F10 melanoma tumor model which is normally unresponsive to monotherapy with anti-PD-1. These findings indicate that ONP-302 allows for tumor control via reprogramming myeloid cells via activation of the STING/IL-15/NK cell mechanism, as well as increasing anti-PD-1 response rates.


Assuntos
Melanoma Experimental , Nanopartículas , Animais , Humanos , Imunoterapia/métodos , Interleucina-15 , Melanoma Experimental/terapia , Proteínas de Membrana/metabolismo , Células Mieloides/metabolismo , Nucleotidiltransferases/metabolismo , Microambiente Tumoral
4.
J Immunol ; 209(3): 465-475, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35725270

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease characterized by T and B cell responses to proteins expressed by insulin-producing pancreatic ß cells, inflammatory lesions within islets (insulitis), and ß cell loss. We previously showed that Ag-specific tolerance targeting single ß cell protein epitopes is effective in preventing T1D induced by transfer of monospecific diabetogenic CD4 and CD8 transgenic T cells to NOD.scid mice. However, tolerance induction to individual diabetogenic proteins, for example, GAD65 (glutamic acid decarboxylase 65) or insulin, has failed to ameliorate T1D both in wild-type NOD mice and in the clinic. Initiation and progression of T1D is likely due to activation of T cells specific for multiple diabetogenic epitopes. To test this hypothesis, recombinant insulin, GAD65, and chromogranin A proteins were encapsulated within poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (COUR CNPs) to assess regulatory T cell induction, inhibition of Ag-specific T cell responses, and blockade of T1D induction/progression in NOD mice. Whereas treatment of NOD mice with CNPs containing a single protein inhibited the corresponding Ag-specific T cell response, inhibition of overt T1D development only occurred when all three diabetogenic proteins were included within the CNPs (CNP-T1D). Blockade of T1D following CNP-T1D tolerization was characterized by regulatory T cell induction and a significant decrease in both peri-insulitis and immune cell infiltration into pancreatic islets. As we have recently published that CNP treatment is both safe and induced Ag-specific tolerance in a phase 1/2a celiac disease clinical trial, Ag-specific tolerance induced by nanoparticles encapsulating multiple diabetogenic proteins is a promising approach to T1D treatment.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Nanopartículas , Animais , Diabetes Mellitus Experimental/patologia , Epitopos , Insulina , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas
5.
Oncoimmunology ; 9(1): 1744897, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32363111

RESUMO

Patients with locally advanced and metastatic urothelial carcinoma have a low survival rate (median 15.7 months, 13.1-17.8), with only a 23% response rate to monotherapy treatment with anti-PDL1 checkpoint immunotherapy. To identify new therapeutic targets, we profiled the immune regulatory signatures during murine cancer development using the BBN carcinogen and identified an increase in the expression of the T cell inhibitory protein B7-H4 (VTCN1, B7S1, B7X). B7-H4 expression temporally correlated with decreased lymphocyte infiltration. While the increase in B7-H4 expression within the bladder by CD11b+ monocytes is shared with human cancers, B7-H4 expression has not been previously identified in other murine cancer models. Higher expression of B7-H4 was associated with worse survival in muscle-invasive bladder cancer in humans, and increased B7-H4 expression was identified in luminal and luminal-papillary subtypes of bladder cancer. Evaluation of B7-H4 by single-cell RNA-Seq and immune mass cytometry of human bladder tumors found that B7-H4 is expressed in both the epithelium of urothelial carcinoma and CD68+ macrophages within the tumor. To investigate the function of B7-H4, treatment of human monocyte and T cell co-cultures with a B7-H4 blocking antibody resulted in enhanced IFN-γ secretion by CD4+ and CD8+ T cells. Additionally, anti-B7-H4 antibody treatment of BBN-carcinogen bladder cancers resulted in decreased tumor size, increased CD8+ T cell infiltration within the bladder, and a complimentary decrease in tumor-infiltrating T regulatory cells (Tregs). Furthermore, treatment with a combination of anti-PD-1 and anti-B7-H4 antibodies resulted in a significant reduction in tumor stage, a reduction in tumor size, and an increased level of tumor necrosis. These findings suggest that antibodies targeting B7-H4 may be a viable strategy for bladder cancers unresponsive to PD-1 checkpoint inhibitors.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Animais , Linfócitos T CD8-Positivos , Humanos , Ativação Linfocitária , Camundongos , Linfócitos T Reguladores , Neoplasias da Bexiga Urinária/tratamento farmacológico
6.
Bio Protoc ; 10(11): e3644, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33659314

RESUMO

Methods to test both the functionality and mechanism of action for human recombinant proteins and antibodies in vitro have been limited by multiple factors. To test the functionality of a recombinant protein or antibody, the receptor, the receptor-associated ligand, or both must be expressed by the cells present within the in vitro culture. While the use of transfected cell lines can circumvent this gap, the use of transfected cell lines does not allow for studying the native signaling pathway(s) modulated by the specific recombinant protein or antibody in primary cells. The present protocol utilizes sort purified CD14+ monocytes and T cells, both CD4+ T cells and CD8+ T cells, from healthy donors in a co-culture system. This methodology is particularly relevant for testing recombinant proteins or antibodies that are putative therapeutics for the treatment of autoimmune disease and cancer. While the current protocol focuses on co-cultures containing B7-H4 expressing monocytes plus either autologous CD4+ T cells or CD8+ T cells, the protocol can be modified for the user's specific needs.

7.
J Immunol ; 201(3): 897-907, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29898965

RESUMO

The potent immune regulatory function of an agonistic B7-H4-Ig fusion protein (B7-H4Ig) has been demonstrated in multiple experimental autoimmune models; however, the identity of a functional B7-H4 receptor remained unknown. The biological activity of B7-H4 is associated with decreased inflammatory CD4+ T cell responses as supported by a correlation between B7-H4-expressing tumor-associated macrophages and Foxp3+ T cells within the tumor microenvironment. Recent data indicate that members of the semaphorin (Sema)/plexin/neuropilin (Nrp) family of proteins both positively and negatively modulate immune cell function. In this study, we show that B7-H4 binds the soluble Sema family member Sema3a. Additionally, B7-H4Ig-induced inhibition of inflammatory CD4+ T cell responses is lost in both Sema3a functional mutant mice and mice lacking Nrp-1 expression in Foxp3+ T cells. These findings indicate that B7-H4Ig binds to Sema3a, which acts as a functional bridge to stimulate an Nrp-1/Plexin A4 heterodimer to form a functional immunoregulatory receptor complex resulting in increased levels of phosphorylated PTEN and enhanced regulatory CD4+ T cell number and function.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Neuropilina-1/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforina-3A/metabolismo , Inibidor 1 da Ativação de Células T com Domínio V-Set/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , PTEN Fosfo-Hidrolase/metabolismo , Microambiente Tumoral/imunologia
8.
J Immunol ; 200(6): 2013-2024, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29431690

RESUMO

ILDR2 is a member of the Ig superfamily, which is implicated in tricellular tight junctions, and has a putative role in pancreatic islet health and survival. We recently found a novel role for ILDR2 in delivering inhibitory signals to T cells. In this article, we show that short-term treatment with ILDR2-Fc results in long-term durable beneficial effects in the relapsing-remitting experimental autoimmune encephalomyelitis and NOD type 1 diabetes models. ILDR2-Fc also promotes transplant engraftment in a minor mismatch bone marrow transplantation model. ILDR2-Fc displays a unique mode of action, combining immunomodulation, regulation of immune homeostasis, and re-establishment of Ag-specific immune tolerance via regulatory T cell induction. These findings support the potential of ILDR-Fc to provide a promising therapeutic approach for the treatment of autoimmune diseases.


Assuntos
Antígenos/imunologia , Homeostase/imunologia , Tolerância Imunológica/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Proteínas de Membrana/imunologia , Animais , Transplante de Medula Óssea/métodos , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD
9.
Sci Rep ; 7(1): 11144, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894253

RESUMO

Germline mutations in ATM (encoding the DNA-damage signaling kinase, ataxia-telangiectasia-mutated) increase Familial Pancreatic Cancer (FPC) susceptibility, and ATM somatic mutations have been identified in resected human pancreatic tumors. Here we investigated how Atm contributes to pancreatic cancer by deleting this gene in a murine model of the disease expressing oncogenic Kras (KrasG12D). We show that partial or total ATM deficiency cooperates with KrasG12D to promote highly metastatic pancreatic cancer. We also reveal that ATM is activated in pancreatic precancerous lesions in the context of DNA damage and cell proliferation, and demonstrate that ATM deficiency leads to persistent DNA damage in both precancerous lesions and primary tumors. Using low passage cultures from primary tumors and liver metastases we show that ATM loss accelerates Kras-induced carcinogenesis without conferring a specific phenotype to pancreatic tumors or changing the status of the tumor suppressors p53, p16Ink4a and p19Arf. However, ATM deficiency markedly increases the proportion of chromosomal alterations in pancreatic primary tumors and liver metastases. More importantly, ATM deficiency also renders murine pancreatic tumors highly sensitive to radiation. These and other findings in our study conclusively establish that ATM activity poses a major barrier to oncogenic transformation in the pancreas via maintaining genomic stability.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Animais , Biomarcadores Tumorais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Dano ao DNA , Modelos Animais de Doenças , Instabilidade Genômica , Humanos , Hibridização in Situ Fluorescente , Camundongos , Camundongos Knockout , Metástase Neoplásica , Neoplasias Pancreáticas/mortalidade , Tolerância a Radiação/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
10.
J Immunol ; 196(4): 1443-8, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26773145

RESUMO

Leukocyte trafficking into the CNS is a prominent feature driving the immunopathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Blocking the recruitment of inflammatory leukocytes into the CNS represents an exploitable therapeutic target; however, the adhesion molecules that specifically regulate the step of leukocyte diapedesis into the CNS remain poorly understood. We report that CD99 is critical for lymphocyte transmigration without affecting adhesion in a human blood-brain barrier model. CD99 blockade in vivo ameliorated experimental autoimmune encephalomyelitis and decreased the accumulation of CNS inflammatory infiltrates, including dendritic cells, B cells, and CD4(+) and CD8(+) T cells. Anti-CD99 therapy was effective when administered after the onset of disease symptoms and blocked relapse when administered therapeutically after disease symptoms had recurred. These findings underscore an important role for CD99 in the pathogenesis of CNS autoimmunity and suggest that it may serve as a novel therapeutic target for controlling neuroinflammation.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígenos CD/imunologia , Linfócitos T CD8-Positivos/imunologia , Moléculas de Adesão Celular/imunologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/terapia , Antígeno 12E7 , Animais , Antígenos CD/fisiologia , Linfócitos B , Barreira Hematoencefálica/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/fisiologia , Adesão Celular , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/fisiologia , Movimento Celular/imunologia , Células Dendríticas , Modelos Animais de Doenças , Humanos , Inflamação/imunologia , Inflamação/terapia , Camundongos
11.
J Autoimmun ; 44: 71-81, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23683881

RESUMO

We evaluated the therapeutic efficacy and mechanisms of action of both mouse and human B7-H4 Immunoglobulin fusion proteins (mB7-H4Ig; hB7-H4Ig) in treating EAE. The present data show that mB7-H4Ig both directly and indirectly (via increasing Treg function) inhibited CD4⁺ T-cell proliferation and differentiation in both Th1- and Th17-cell promoting conditions while inducing production of IL-10. B7-H4Ig treatment effectively ameliorated progression of both relapsing (R-EAE) and chronic EAE correlating with decreased numbers of activated CD4⁺ T-cells within the CNS and spleen, and a concurrent increase in number and function of Tregs. The functional requirement for Treg activation in treating EAE was demonstrated by a loss of therapeutic efficacy of hB7-H4Ig in R-EAE following inactivation of Treg function either by anti-CD25 treatment or blockade of IL-10. Significant to the eventual translation of this treatment into clinical practice, hB7-H4Ig similarly inhibited the in vitro differentiation of naïve human CD4⁺ T-cells in both Th1- and Th17-promoting conditions, while promoting the production of IL-10. B7-H4Ig thus regulates pro-inflammatory T-cell responses by a unique dual mechanism of action and demonstrates significant promise as a therapeutic for autoimmune diseases, including MS.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Imunoglobulinas/farmacologia , Interleucina-10/imunologia , Linfócitos T/efeitos dos fármacos , Inibidor 1 da Ativação de Células T com Domínio V-Set/farmacologia , Animais , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Encefalomielite Autoimune Experimental/imunologia , Feminino , Humanos , Imunoglobulinas/imunologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Linfócitos T/imunologia , Inibidor 1 da Ativação de Células T com Domínio V-Set/imunologia
12.
J Immunol ; 188(12): 5970-80, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22561152

RESUMO

In search of autoantigen-presenting cells that prime the pathogenic autoantibody-inducing Th cells of lupus, we found that CD41(+)CD151(+) cells among Lineage(-) (Lin(-)) CD117(+) (c-Kit(+)) CX3CR1(-) splenocytes depleted of known APCs were most proficient in presenting nuclear autoantigens from apoptotic cells to induce selectively an autoimmune Th17 response in different lupus-prone mouse strains. The new APCs have properties resembling megakaryocyte and/or bipotent megakaryocyte/erythroid progenitors of bone marrow, hence they are referred to as MM cells in this study. The MM cells produce requisite cytokines, but they require contact for optimal Th17 induction upon nucleosome feeding, and can induce Th17 only before undergoing differentiation to become c-Kit(-)CD41(+) cells. The MM cells expand up to 10-fold in peripheral blood of lupus patients and 49-fold in spleens of lupus mice preceding disease activity; they accelerate lupus in vivo and break tolerance in normal mice, inducing autoimmune Th17 cells. MM cells also cause Th17 skewing to foreign Ag in normal mice without Th17-polarizing culture conditions. Several molecules in MM cells are targets for blocking of autoimmunization. This study advances our understanding of lupus pathogenesis and Th17 differentiation biology by characterizing a novel category of APC.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Ativação Linfocitária/imunologia , Células Progenitoras de Megacariócitos/imunologia , Células Th17/imunologia , Adulto , Animais , Apresentação de Antígeno/imunologia , Autoanticorpos/imunologia , Autoantígenos/imunologia , Diferenciação Celular/imunologia , Separação Celular , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Mutantes , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Th17/citologia
13.
J Clin Immunol ; 31(3): 379-94, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21287397

RESUMO

Tolerance therapy with nucleosomal histone peptides H4(71-94), H4(16-39), or H1'(22-42) controls disease in lupus-prone SNF1 mice. It would be clinically important to determine whether a cocktail of the above epitopes would be superior. Herein, we found that compared with cocktail peptides, H4(71-94) monotherapy more effectively delayed nephritis onset, prolonged lifespan, diminished immunoglobulin G autoantibody levels, reduced autoantigen-specific Th1 and Th17 responses and frequency of T(FH) cells in spleen and the helper ability of autoimmune T cells to B cells, by inducing potent CD8 Treg cells. H4(71-94) therapy was superior in "tolerance spreading," suppressing responses to other autoepitopes, nucleosomes, and ribonucleoprotein. We also developed an in vitro assay for therapeutic peptides (potentially in humans), which showed that H4(71-94), without exogenous transforming growth factor (TGF)-ß, was efficient in inducing stable CD4(+)CD25(+)Foxp3(+) T cells by decreasing interleukin 6 and increasing TGF-ß production by dendritic cells that induced ALK5-dependent Smad-3 phosphorylation (TGF-ß signal) in target autoimmune CD4(+) T cells.


Assuntos
Autoimunidade/efeitos dos fármacos , Histonas/farmacologia , Tolerância Imunológica/efeitos dos fármacos , Imunoensaio , Fatores Imunológicos/farmacologia , Nefrite Lúpica/tratamento farmacológico , Peptídeos/farmacologia , Animais , Autoanticorpos/imunologia , Autoantígenos/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Citocinas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Combinação de Medicamentos , Epitopos/imunologia , Feminino , Citometria de Fluxo , Histonas/síntese química , Histonas/imunologia , Tolerância Imunológica/imunologia , Fatores Imunológicos/síntese química , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Nucleossomos/imunologia , Nucleossomos/metabolismo , Peptídeos/síntese química , Peptídeos/imunologia
14.
J Exp Med ; 207(7): 1359-67, 2010 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-20530203

RESUMO

A recessive mutation named Justy was found that abolishes B lymphopoiesis but does not impair other major aspects of hematopoiesis. Transplantation experiments showed that homozygosity for Justy prevented hematopoietic progenitors from generating B cells but did not affect the ability of bone marrow stroma to support B lymphopoiesis. In bone marrow from mutant mice, common lymphoid progenitors and pre-pro-B cells appeared normal, but cells at subsequent stages of B lymphopoiesis were dramatically reduced in number. Under culture conditions that promoted B lymphopoiesis, mutant pre-pro-B cells remained alive and began expressing the B cell marker CD19 but failed to proliferate. In contrast, these cells were able to generate myeloid or T/NK precursors. Genetic and molecular analysis demonstrated that Justy is a point mutation within the Gon4-like (Gon4l) gene, which encodes a protein with homology to transcriptional regulators. This mutation was found to disrupt Gon4l pre-mRNA splicing and dramatically reduce expression of wild-type Gon4l RNA and protein. Consistent with a role for Gon4l in transcriptional regulation, the levels of RNA encoding C/EBPalpha and PU.1 were abnormally high in mutant B cell progenitors. Our findings indicate that the Gon4l protein is required for B lymphopoiesis and may function to regulate gene expression during this process.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Linfopoese/genética , Mutação/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Sequência de Bases , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Masculino , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/metabolismo , Biossíntese de Proteínas , Splicing de RNA/genética , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo , Transcrição Gênica
15.
Biotechnol J ; 3(3): 370-7, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18064608

RESUMO

In recent years, restriction-less recombination cloning systems based on site-specific recombinase with high efficiency have been proven to be very successful. Thus, it is desirable to convert existing conventional vectors to recombination vectors. In this report, we describe the conversion of a set of widely used conventional vectors to Gateway recombination expression vectors. An attB cassette flanked by several restriction enzyme sites was inserted in a cloning vector, and then subcloned into existing vectors to be converted to construct intermediate vectors containing the attB cassette, which were then converted to recombination expression vectors by in vitro recombination. The intermediate vectors generated in this study can be used for releasing the attB cassette to convert other vectors using the same protocol described here. With the increasing number of recombination vectors constructed with this protocol, the likeliness of releasing the attB cassette from an existing vector, rather than synthesizing it with PCR, will increase. The final expression vectors can also be used for releasing the attR cassette for constructing new vectors.


Assuntos
Vetores Genéticos/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Recombinação Genética/genética , DNA Ligases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA