Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Med ; 18: 565-76, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22354215

RESUMO

Pharmacological targeting of individual ErbB receptors elicits antitumor activity, but is frequently compromised by resistance leading to therapeutic failure. Here, we describe an immunotherapeutic approach that exploits prevalent and fundamental mechanisms by which aberrant upregulation of the ErbB network drives tumorigenesis. A chimeric antigen receptor named T1E28z was engineered, in which the promiscuous ErbB ligand, T1E, is fused to a CD28 + CD3ζ endodomain. Using a panel of ErbB-engineered 32D hematopoietic cells, we found that human T1E28z⁺ T cells are selectively activated by all ErbB1-based homodimers and heterodimers and by the potently mitogenic ErbB2/3 heterodimer. Owing to this flexible targeting capability, recognition and destruction of several tumor cell lines was achieved by T1E28⁺ T cells in vitro, comprising a wide diversity of ErbB receptor profiles and tumor origins. Furthermore, compelling antitumor activity was observed in mice bearing established xenografts, characterized either by ErbB1/2 or ErbB2/3 overexpression and representative of insidious or rapidly progressive tumor types. Together, these findings support the clinical development of a broadly applicable immunotherapeutic approach in which the propensity of solid tumors to dysregulate the extended ErbB network is targeted for therapeutic gain.


Assuntos
Transformação Celular Neoplásica/genética , Multimerização Proteica/efeitos dos fármacos , Receptor ErbB-2/genética , Linfócitos T/metabolismo , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Feminino , Engenharia Genética , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Interleucina-4/imunologia , Interleucina-4/metabolismo , Camundongos , Camundongos SCID , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Receptores de Antígenos/genética , Receptores de Antígenos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/imunologia , Transdução Genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Clin Immunol ; 31(4): 710-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21505816

RESUMO

Adoptive immunotherapy using chimeric antigen receptor-engrafted T cells is a promising emerging therapy for cancer. Prior to clinical testing, it is mandatory to evaluate human therapeutic cell products in meaningful in vivo pre-clinical models. Here, we describe the use of fused single-photon emission CT-CT imaging to monitor real-time migration of chimeric antigen receptor-engineered T cells in immune compromised (SCID Beige) mice. Following intravenous administration, human T cells migrate in a highly similar manner to that reported in man, but penetrate poorly into established tumors. By contrast, when delivered via intraperitoneal or subcutaneous routes, T cells remain at the site of inoculation with minimal systemic absorption-irrespective of the presence or absence of tumor. Together, these data support the validity of pre-clinical testing of human T-cell immunotherapy in SCID Beige mice. In light of their established efficacy, regional administration of engineered human T cells represents an attractive therapeutic option to minimize toxicity in the treatment of selected malignancies.


Assuntos
Movimento Celular , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia , Transferência Adotiva/métodos , Animais , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/terapia , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos SCID , Mucina-1/imunologia , Proteínas Recombinantes de Fusão , Linfócitos T/citologia , Linfócitos T/transplante , Transplante Heterólogo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Biol Chem ; 285(33): 25538-44, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20562098

RESUMO

Polyclonal T-cells can be directed against cancer using transmembrane fusion molecules known as chimeric antigen receptors (CARs). Although preclinical studies have provided encouragement, pioneering clinical trials using CAR-based immunotherapy have been disappointing. Key obstacles are the need for robust expansion ex vivo followed by sustained survival of infused T-cells in patients. To address this, we have developed a system to achieve selective proliferation of CAR(+) T-cells using IL-4, a cytokine with several pathophysiologic and therapeutic links to cancer. A chimeric cytokine receptor (4alphabeta) was engineered by fusion of the IL-4 receptor alpha (IL-4Ralpha) ectodomain to the beta(c) subunit, used by IL-2 and IL-15. Addition of IL-4 to T-cells that express 4alphabeta resulted in STAT3/STAT5/ERK phosphorylation and exponential proliferation, mimicking the actions of IL-2. Using receptor-selective IL-4 muteins, partnering of 4alphabeta with gamma(c) was implicated in signal delivery. Next, human T-cells were engineered to co-express 4alphabeta with a CAR specific for tumor-associated MUC1. These T-cells exhibited an unprecedented capacity to elicit repeated destruction of MUC1-expressing tumor cultures and expanded through several logs in vitro. Despite prolonged culture in IL-4, T-cells retained specificity for target antigen, type 1 polarity, and cytokine dependence. Similar findings were observed using CARs directed against two additional tumor-associated targets, demonstrating generality of application. Furthermore, this system allows rapid ex vivo expansion and enrichment of engineered T-cells from small blood volumes, under GMP-compliant conditions. Together, these findings provide proof of principle for the development of IL-4-enhanced T-cell immunotherapy of cancer.


Assuntos
Interleucina-4/farmacologia , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Animais , Western Blotting , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citometria de Fluxo , Humanos , Interleucina-15/farmacologia , Interleucina-2/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/genética , Camundongos , Fosforilação/efeitos dos fármacos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Interleucina-4/genética , Receptores de Interleucina-4/metabolismo , Proteínas Recombinantes de Fusão/genética , Fator de Transcrição STAT3/metabolismo
4.
Breast Cancer Res ; 10(3): R52, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18541018

RESUMO

INTRODUCTION: The identification of potential breast cancer stem cells is of importance as the characteristics of stem cells suggest that they are resistant to conventional forms of therapy. Several techniques have been proposed to isolate or enrich for tumorigenic breast cancer stem cells, including (a) culture of cells in non-adherent non-differentiating conditions to form mammospheres and (b) sorting of the cells by their surface phenotype (expression of CD24 and CD44). METHODS: We have cultured metastatic cells found in pleural effusions from breast cancer patients in non-adherent conditions without serum to form mammospheres. Dissociated cells from these mammospheres were used to determine the tumorigenicity of these cultures. Expression of CD24 and CD44 on uncultured cells and mammospheres derived from the pleural effusions was documented. RESULTS: We found that the majority (20/27) of the pleural effusions tested contained cells capable of forming mammospheres of varying sizes that could be passaged. After dissociation and plating with serum onto adherent dishes, the cells can differentiate, as determined by the increased expression of cytokeratins and MUC1. Analysis of surface expression of CD24 and CD44 on uncultured cells from 21 of the samples showed that the cells from some samples separated into two populations, but some did not. The proportion of cells that could be considered CD44+/CD24low/- was highly variable and did not appear to correlate with the ability to form the larger mammospheres. Of eight pleural effusion mammospheres tested in severe combined immunodeficiency disease (SCID) mice, four were found to induce tumours when only 5,000 or fewer cells were injected, whereas the same number of uncultured cells did not form tumours. The ability to induce tumours appeared to correlate with the ability to produce the larger mammospheres. Uncultured cells from a highly tumorigenic sample (PE14) were uniformly negative for surface expression of both CD24 and CD44. CONCLUSION: This paper shows, for the first time, that mammosphere culture of pleural effusions enriches for cells capable of inducing tumours in SCID mice. The data suggest that mammosphere culture of these metastatic cells could provide a highly appropriate model for studying the sensitivity of the tumorigenic 'stem' cells to therapeutic agents and for further characterisation of the tumour-inducing subpopulation of breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Técnicas de Cultura de Células/métodos , Derrame Pleural/metabolismo , Animais , Neoplasias da Mama/patologia , Antígeno CD24/biossíntese , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Feminino , Humanos , Receptores de Hialuronatos/biossíntese , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos SCID , Modelos Biológicos , Transplante de Neoplasias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA