Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
1.
ACS Med Chem Lett ; 15(7): 989-993, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39015279

RESUMO

Artificial intelligence (AI) and machine learning (ML) are anticipated to accelerate drug discovery programs. Following our development of an end-to-end virtual screening cascade at the University of Cape Town (UCT) Holistic Drug Discovery and Development (H3D) Center, we report the ongoing implementation of open-source AI/ML tools for use in resource-constrained settings.

2.
Antimicrob Agents Chemother ; 68(7): e0014324, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38899927

RESUMO

In response to the spread of artemisinin (ART) resistance, ART-based hybrid drugs were developed, and their activity profile was characterized against drug-sensitive and drug-resistant Plasmodium falciparum parasites. Two hybrids were found to display parasite growth reduction, stage-specificity, speed of activity, additivity of activity in drug combinations, and stability in hepatic microsomes of similar levels to those displayed by dihydroartemisinin (DHA). Conversely, the rate of chemical homolysis of the peroxide bonds is slower in hybrids than in DHA. From a mechanistic perspective, heme plays a central role in the chemical homolysis of peroxide, inhibiting heme detoxification and disrupting parasite heme redox homeostasis. The hybrid exhibiting slow homolysis of peroxide bonds was more potent in reducing the viability of ART-resistant parasites in a ring-stage survival assay than the hybrid exhibiting fast homolysis. However, both hybrids showed limited activity against ART-induced quiescent parasites in the quiescent-stage survival assay. Our findings are consistent with previous results showing that slow homolysis of peroxide-containing drugs may retain activity against proliferating ART-resistant parasites. However, our data suggest that this property does not overcome the limited activity of peroxides in killing non-proliferating parasites in a quiescent state.


Assuntos
Antimaláricos , Artemisininas , Plasmodium falciparum , Artemisininas/farmacologia , Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Resistência a Medicamentos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Humanos , Testes de Sensibilidade Parasitária , Animais , Peróxidos/farmacologia
3.
J Med Chem ; 67(13): 11401-11420, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38918002

RESUMO

Structure-activity relationship studies of 2,8-disubstituted-1,5-naphthyridines, previously reported as potent inhibitors of Plasmodium falciparum (Pf) phosphatidylinositol-4-kinase ß (PI4K), identified 1,5-naphthyridines with basic groups at 8-position, which retained Plasmodium PI4K inhibitory activity but switched primary mode of action to the host hemoglobin degradation pathway through inhibition of hemozoin formation. These compounds showed minimal off-target inhibitory activity against the human phosphoinositide kinases and MINK1 and MAP4K kinases, which were associated with the teratogenicity and testicular toxicity observed in rats for the PfPI4K inhibitor clinical candidate MMV390048. A representative compound from the series retained activity against field isolates and lab-raised drug-resistant strains of Pf. It was efficacious in the humanized NSG mouse malaria infection model at a single oral dose of 32 mg/kg. This compound was nonteratogenic in the zebrafish embryo model of teratogenicity and has a low predicted human dose, indicating that this series has the potential to deliver a preclinical candidate for malaria.


Assuntos
1-Fosfatidilinositol 4-Quinase , Antimaláricos , Hemeproteínas , Naftiridinas , Plasmodium falciparum , Peixe-Zebra , Plasmodium falciparum/efeitos dos fármacos , Animais , Naftiridinas/farmacologia , Naftiridinas/química , Naftiridinas/síntese química , Naftiridinas/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/síntese química , 1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , 1-Fosfatidilinositol 4-Quinase/metabolismo , Humanos , Relação Estrutura-Atividade , Hemeproteínas/antagonistas & inibidores , Hemeproteínas/metabolismo , Camundongos , Ratos , Malária Falciparum/tratamento farmacológico , Masculino , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química
5.
ACS Med Chem Lett ; 15(4): 463-469, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38628794

RESUMO

Toward addressing the cardiotoxicity liability associated with the antimalarial drug astemizole (AST, hERG IC50 = 0.0042 µM) and its derivatives, we designed and synthesized analogues based on compound 1 (Pf NF54 IC50 = 0.012 µM; hERG IC50 = 0.63 µM), our previously identified 3-trifluoromethyl-1,2,4-oxadiazole AST analogue. Compound 11 retained in vitro multistage antiplasmodium activity (ABS PfNF54 IC50 = 0.017 µM; gametocytes PfiGc/PfLGc IC50 = 1.24/1.39 µM, and liver-stage PbHepG2 IC50 = 2.30 µM), good microsomal metabolic stability (MLM CLint < 11 µL·min-1·mg-1, EH < 0.33), and solubility (150 µM). It shows a ∼6-fold and >6000-fold higher selectivity against human ether-á-go-go-related gene higher selectively potential over hERG relative to 1 and AST, respectively. Despite the excellent in vitro antiplasmodium activity profile, in vivo efficacy in the Plasmodium berghei mouse infection model was diminished, attributable to suboptimal oral bioavailability (F = 14.9%) at 10 mg·kg-1 resulting from poor permeability (log D7.4 = -0.82). No cross-resistance was observed against 44 common Pf mutant lines, suggesting activity via a novel mechanism of action.

7.
ACS Med Chem Lett ; 15(3): 314-315, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38505853
10.
Sci Transl Med ; 15(718): eadj0035, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37851825

RESUMO

Zoonotic and related infections pose an enormous health threat to the world's second-most populous continent. Despite the challenges faced by drug discovery scientists in Africa, recent progress toward identifying potential medicines across diverse disease areas is a cause for optimism and an indicator of progress in African-led scientific initiatives.


Assuntos
Médicos , Humanos , África/epidemiologia
11.
Nat Commun ; 14(1): 5736, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714843

RESUMO

Streamlined data-driven drug discovery remains challenging, especially in resource-limited settings. We present ZairaChem, an artificial intelligence (AI)- and machine learning (ML)-based tool for quantitative structure-activity/property relationship (QSAR/QSPR) modelling. ZairaChem is fully automated, requires low computational resources and works across a broad spectrum of datasets. We describe an end-to-end implementation at the H3D Centre, the leading integrated drug discovery unit in Africa, at which no prior AI/ML capabilities were available. By leveraging in-house data collected over a decade, we have developed a virtual screening cascade for malaria and tuberculosis drug discovery comprising 15 models for key decision-making assays ranging from whole-cell phenotypic screening and cytotoxicity to aqueous solubility, permeability, microsomal metabolic stability, cytochrome inhibition, and cardiotoxicity. We show how computational profiling of compounds, prior to synthesis and testing, can inform progression of frontrunner compounds at H3D. This project is a first-of-its-kind deployment at scale of AI/ML tools in a research centre operating in a low-resource setting.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , África , Bioensaio , Descoberta de Drogas
12.
Nat Rev Drug Discov ; 22(10): 807-826, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37652975

RESUMO

Recent antimalarial drug discovery has been a race to produce new medicines that overcome emerging drug resistance, whilst considering safety and improving dosing convenience. Discovery efforts have yielded a variety of new molecules, many with novel modes of action, and the most advanced are in late-stage clinical development. These discoveries have led to a deeper understanding of how antimalarial drugs act, the identification of a new generation of drug targets, and multiple structure-based chemistry initiatives. The limited pool of funding means it is vital to prioritize new drug candidates. They should exhibit high potency, a low propensity for resistance, a pharmacokinetic profile that favours infrequent dosing, low cost, preclinical results that demonstrate safety and tolerability in women and infants, and preferably the ability to block Plasmodium transmission to Anopheles mosquito vectors. In this Review, we describe the approaches that have been successful, progress in preclinical and clinical development, and existing challenges. We illustrate how antimalarial drug discovery can serve as a model for drug discovery in diseases of poverty.


Assuntos
Antimaláricos , Plasmodium , Animais , Feminino , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Resistência a Medicamentos , Descoberta de Drogas/métodos
13.
ACS Med Chem Lett ; 14(7): 875-878, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37465315

RESUMO

This viewpoint outlines the case for developing new chemical entities (NCEs) as racemates in infectious diseases and where both enantiomers and racemate retain similar on- and off-target activities as well as similar PK profiles. There are not major regulatory impediments for the development of a racemic drug, and minimizing the manufacturing costs becomes a particularly important objective when bringing an anti-infective therapeutic to the marketplace in the endemic settings of infectious diseases.

14.
Trends Parasitol ; 39(9): 720-731, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37385921

RESUMO

Highly druggable and essential to almost all aspects of cellular life, the protein and phosphoinositide kinase gene families offer a wealth of potential targets for pharmacological modulation for both noncommunicable and infectious diseases. Despite the success of kinase inhibitors in oncology and other disease indications, targeting kinases comes with significant challenges. Key hurdles for kinase drug discovery include selectivity and acquired resistance. The phosphatidylinositol 4-kinase beta inhibitor MMV390048 showed good efficacy in Phase 2a clinical trials, demonstrating the potential of kinase inhibitors for malaria treatment. Here we argue that the potential benefits of Plasmodium kinase inhibitors outweigh the risks, and we highlight the opportunity for designed polypharmacology to reduce the risk of resistance.


Assuntos
Malária , Plasmodium , Humanos , Malária/tratamento farmacológico , Plasmodium/genética , Descoberta de Drogas
16.
Antimicrob Agents Chemother ; 67(5): e0134522, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37010410

RESUMO

The translation of a preclinical antimalarial drug development candidate to the clinical phases should be supported by rational human dose selection. A model-informed strategy based on preclinical data, which incorporates pharmacokinetic-pharmacodynamic (PK-PD) properties with physiologically based pharmacokinetic (PBPK) modeling, is proposed to optimally predict an efficacious human dose and dosage regimen for the treatment of Plasmodium falciparum malaria. The viability of this approach was explored using chloroquine, which has an extensive clinical history for malaria treatment. First, the PK-PD parameters and the PK-PD driver of efficacy for chloroquine were determined through a dose fractionation study in the P. falciparum-infected humanized mouse model. A PBPK model for chloroquine was then developed for predicting the drug's PK profiles in a human population, from which the human PK parameters were determined. Lastly, the PK-PD parameters estimated in the P. falciparum-infected mouse model and the human PK parameters derived from the PBPK model were integrated to simulate the human dose-response relationships against P. falciparum, which subsequently allowed the determination of an optimized treatment. The predicted efficacious human dose and dosage regimen for chloroquine were comparable to those recommended clinically for the treatment of uncomplicated, drug-sensitive malaria, which provided supportive evidence for the proposed model-based approach to antimalarial human dose predictions.


Assuntos
Antimaláricos , Malária Falciparum , Animais , Camundongos , Humanos , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Malária Falciparum/tratamento farmacológico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Modelos Animais de Doenças , Plasmodium falciparum
17.
Nat Rev Chem ; 7(5): 340-354, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37117810

RESUMO

Drug metabolism is generally associated with liver enzymes. However, in the case of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), Mtb-mediated drug metabolism plays a significant role in treatment outcomes. Mtb is equipped with enzymes that catalyse biotransformation reactions on xenobiotics with consequences either in its favour or as a hindrance by deactivating or activating chemical entities, respectively. Considering the range of chemical reactions involved in the biosynthetic pathways of Mtb, information related to the biotransformation of antitubercular compounds would provide opportunities for the development of new chemical tools to study successful TB infections while also highlighting potential areas for drug discovery, host-directed therapy, dose optimization and elucidation of mechanisms of action. In this Review, we discuss Mtb-mediated biotransformations and propose a holistic approach to address drug metabolism in TB drug discovery and related areas.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Humanos , Xenobióticos/metabolismo , Antituberculosos/uso terapêutico , Tuberculose/tratamento farmacológico , Tuberculose Latente/tratamento farmacológico
18.
ACS Infect Dis ; 9(4): 928-942, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36946433

RESUMO

We previously identified a novel class of antimalarial benzimidazoles incorporating an intramolecular hydrogen bonding motif. The frontrunner of the series, analogue A, showed nanomolar activity against the chloroquine-sensitive NF54 and multi-drug-resistant K1 strains of Plasmodium falciparum (PfNF54 IC50 = 0.079 µM; PfK1 IC50 = 0.335 µM). Here, we describe a cell-based medicinal chemistry structure-activity relationship study using compound A as a basis. This effort led to the identification of novel antimalarial imidazopyridines with activities of <1 µM, favorable cytotoxicity profiles, and good physicochemical properties. Analogue 14 ( PfNF54 IC50 = 0.08 µM; PfK1 IC50 = 0.10 µM) was identified as the frontrunner of the series. Preliminary mode of action studies employing molecular docking, live-cell confocal microscopy, and a cellular heme fractionation assay revealed that 14 does not directly inhibit the conversion of heme to hemozoin, although it could be involved in other processes in the parasite's digestive vacuole.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Antimaláricos/farmacologia , Antimaláricos/química , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Química Farmacêutica , Plasmodium falciparum , Heme
19.
ACS Infect Dis ; 9(3): 706-715, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36802491

RESUMO

The rise in drug-resistant tuberculosis has necessitated the search for alternative antibacterial treatments. Spiropyrimidinetriones (SPTs) represent an important new class of compounds that work through gyrase, the cytotoxic target of fluoroquinolone antibacterials. The present study analyzed the effects of a novel series of SPTs on the DNA cleavage activity of Mycobacterium tuberculosis gyrase. H3D-005722 and related SPTs displayed high activity against gyrase and increased levels of enzyme-mediated double-stranded DNA breaks. The activities of these compounds were similar to those of the fluoroquinolones, moxifloxacin, and ciprofloxacin and greater than that of zoliflodacin, the most clinically advanced SPT. All the SPTs overcame the most common mutations in gyrase associated with fluoroquinolone resistance and, in most cases, were more active against the mutant enzymes than wild-type gyrase. Finally, the compounds displayed low activity against human topoisomerase IIα. These findings support the potential of novel SPT analogues as antitubercular drugs.


Assuntos
Mycobacterium tuberculosis , Humanos , Clivagem do DNA , Inibidores da Topoisomerase II/farmacologia , DNA Girase/genética , DNA Girase/metabolismo , Antituberculosos/farmacologia , Fluoroquinolonas/farmacologia
20.
ACS Infect Dis ; 9(3): 653-667, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36802523

RESUMO

Structural modification of existing chemical scaffolds to afford new molecules able to circumvent drug resistance constitutes one of the rational approaches to antimalarial drug discovery. Previously synthesized compounds based on the 4-aminoquinoline core hybridized with a chemosensitizing dibenzylmethylamine side group showed in vivo efficacy in Plasmodium berghei-infected mice despite low microsomal metabolic stability, suggesting a contribution from their pharmacologically active metabolites. Here, we report on a series of these dibemequine (DBQ) metabolites with low resistance indices against chloroquine-resistant parasites and improved metabolic stability in liver microsomes. The metabolites also exhibit improved pharmacological properties including lower lipophilicity, cytotoxicity, and hERG channel inhibition. Using cellular heme fractionation experiments, we also demonstrate that these derivatives inhibit hemozoin formation by causing a buildup of toxic "free" heme in a similar manner to chloroquine. Finally, assessment of drug interactions also revealed synergy between these derivatives and several clinically relevant antimalarials, thus highlighting their potential interest for further development.


Assuntos
Antimaláricos , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/química , Plasmodium falciparum , Cloroquina/farmacologia , Heme/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA