Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 14(49): e1803027, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30294862

RESUMO

Magnetic shape memory materials hold a great promise for next-generation actuation devices and systems for energy conversion, thanks to the intimate coupling between structure and magnetism in their martensitic phase. Here novel magnetic shape memory free-standing nanodisks are proposed, proving that the lack of the substrate constrains enables the exploitation of new microstructure-controlled actuation mechanisms by the combined application of different stimuli-i.e., temperature and magnetic field. The results show that a reversible areal strain (up to 5.5%) can be achieved and tuned in intensity and sign (i.e., areal contraction or expansion) by the application of a magnetic field. The mechanisms at the basis of the actuation are investigated by experiments performed at different length scales and directly visualized by several electron microscopy techniques, including electron holography, showing that thermo/magnetomechanical properties can be optimized by engineering the martensitic microstructure through epitaxial growth and lateral confinement. These findings represent a step forward toward the development of a new class of temperature-field controlled nanoactuators and smart nanomaterials.

2.
Interdiscip Sci ; 7(4): 373-81, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26341499

RESUMO

Slime mold Physarum polycephalum is a single cell visible by an unaided eye. The slime mold optimizes its network of protoplasmic tubes to minimize expose to repellents and maximize expose to attractants and to make efficient transportation of nutrients. These properties of P. polycephalum, together with simplicity of its handling and culturing, make it a priceless substrate for designing novel sensing, computing and actuating architectures in living amorphous biological substrate. We demonstrate that, by loading Physarum with magnetic particles and positioning it in a magnetic field, we can, in principle, impose analog control procedures to precisely route active growing zones of slime mold and shape topology of its protoplasmic networks.


Assuntos
Nanopartículas de Magnetita , Physarum polycephalum/crescimento & desenvolvimento , Physarum polycephalum/metabolismo
3.
Interdiscip Sci ; 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25519154

RESUMO

Slime mold Physarum polycephalum is a single cell visible by an unaided eye. The slime mold optimizes its network of protoplasmic tubes to minimize expose to repellents and maximize expose to attractants and to make efficient transportation of nutrients. These properties of P. polycephalum, together with simplicity of its handling and culturing, make it a priceless substrate for designing novel sensing, computing and actuating architectures in living amorphous biological substrate. We demonstrate that, by loading Physarum with magnetic particles and positioning it in a magnetic field, we can, in principle, impose analog control procedures to precisely route active growing zones of slime mold and shape topology of its protoplasmic networks.

4.
Interdiscip Sci ; 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25373635

RESUMO

Slime mold Physarum polycephalum is a single cell visible by an unaided eye. The slime mold optimizes its network of protoplasmic tubes to minimize expose to repellents and maximize expose to attractants and to make efficient transportation of nutrients. These properties of P. polycephalum, together with simplicity of its handling and culturing, make it a priceless substrate for designing novel sensing, computing and actuating architectures in living amorphous biological substrate. We demonstrate that, by loading Physarum with magnetic particles and positioning it in a magnetic field, we can, in principle, impose analog control procedures to precisely route active growing zones of slime mold and shape topology of its protoplasmic networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA