Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(10)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37892927

RESUMO

Human dental pulp stem cells (DPSCs) exhibit multilineage differentiation capabilities and superior clonogenic and proliferative properties. However, the use of animal-derived components such as FBS raises concerns regarding the clinical application of stem-cell-based therapies. Platelet-rich fibrin (PRF) derived from human blood is rich in fibrin, platelets, and growth factors and acts as a bioactive scaffold for grafting with biomaterials. In this study, we assessed the efficacy of PRF-conditioned medium (CM) in promoting DPSCs proliferation and osteogenic differentiation compared with the standard culture medium supplemented with FBS. A comparison of DPSCs cultured in FBS and PRF-CM revealed no differences in characteristics or morphology. However, cells cultured with PRF-CM exhibited inferior proliferation rates and cell numbers during passage in comparison with those cultured with FBS. In contrast, DPSCs cultured in PRF-CM showed significantly higher levels of calcification, and RT-PCR confirmed that the gene expression levels of markers associated with osteoblast differentiation were significantly increased. The PRF-CM approach offers a convenient, straightforward, and advantageous method for culturing DPSCs, without relying on animal-derived components. In summary, this study introduces a novel application of PRF-CM for enhancing the osteogenesis of DPSCs, which provides an alternative to FBS culture medium and addresses concerns associated with the use of animal-derived components in clinical settings.

2.
Bone ; 166: 116575, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36195245

RESUMO

INTRODUCTION: Dental pulp stem cells (DPSCs) have high proliferative and multilineage differentiation potential in mesenchymal stem cells. However, several studies have indicated that there are individual differences in the potential for osteogenic differentiation of DPSCs, and the factors determining these differences are unknown. OBJECTIVE: To identify the genes responsible for the individual differences in the osteogenic differentiation ability of DPSCs. METHODS: We divided DPSCs into high and low osteogenic differentiation ability groups (HG or LG) with ALP and von Kossa stain, and compared the gene expression patterns using RNA-seq. In addition, genes that may affect osteogenic differentiation were knocked down using small interfering RNA (siRNA) and their effects were investigated. RESULTS: The RNA-seq patterns revealed that VCAM1 and GFPT2 were significantly expressed at higher levels in the HG than in the LG. The results of siRNA analysis showed that VCAM1 and GFPT2 knockdown significantly reduced the expression of osteogenic markers. Furthermore, we analyzed the involvement of these two genes in cell signaling in DPSC differentiation. The results indicated that the VCAM1-mediated Ras-MEK-Erk and PI3K/Akt pathways are involved in the osteogenic differentiation of DPSCs, and that GFPT2-mediated HBP signaling influences the osteogenic differentiation of DPSCs. CONCLUSIONS: These findings indicate that DPSCs that highly express VCAM1 and GFPT2 have a high capacity for osteogenic differentiation. Evaluation of VCAM1 and GFPT2 expression in undifferentiated DPSCs may predict the outcome of bone regenerative therapy using DPSCs. Moreover, the expression levels of VCAM1 and GFPT2 in DPSCs may be useful in setting criteria for selecting donors for allogeneic cell transplantation for bone regeneration.


Assuntos
Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante) , Osteogênese , Molécula 1 de Adesão de Célula Vascular , Humanos , Biomarcadores/metabolismo , Diferenciação Celular/genética , Proliferação de Células , Células Cultivadas , Polpa Dentária , Osteoblastos , Osteogênese/genética , Fosfatidilinositol 3-Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Células-Tronco/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA