Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 104(4): 1437-1461, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31900560

RESUMO

Bacteria, fungi, viruses, and nematodes are the major causal agents of plant diseases. These phytopathogens are responsible for about 10-40% losses in productivity and quality of food crops and horticultural produce. Although eradication of pathogens is not possible, control of plant diseases has been an area of continuous improvement/research. Use of antimicrobials, bacteriophages, and biocontrol agents, natural and synthetic agrochemicals along with best farm management practices constitute integrated measures for disease control. However, the quest for new materials continues due to pesticide resistance in the pathogens, emergence of new serotypes, and accumulation of high quantities of agrochemical contaminants in the ecosystem and associated environmental hazards, specificity of biocontrol agents, succession of pathogens during the plant growth phase, etc. The emergence of "nanotechnology," a multidisciplinary field of research, has provided a plethora of nanomaterials for potential applications in the agricultural sector. Control of plant diseases requires agents that reduce the pathogen to manageable levels, tools for early-stage detection of pathogen, and compounds that elicit immune response in the host plants. Nanomaterials have in fact been assessed for their utility in all these approaches for disease control. The present review discusses nanomaterials for controlling phytopathogens, nanomaterials in plant disease diagnostics, and nanomaterials as elicitors of the plant immune system. These nanomaterials thus represent new weapons in the fight against the phytopathogens. Recent studies indicate that nanomaterials will be a crucial component in the agroecosystem.


Assuntos
Agricultura/métodos , Nanoestruturas/química , Nanotecnologia/tendências , Doenças das Plantas/prevenção & controle , Plantas/efeitos dos fármacos , Imunidade Vegetal , Plantas/microbiologia , Plantas/parasitologia , Plantas/virologia
2.
Appl Microbiol Biotechnol ; 103(11): 4605-4621, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30993385

RESUMO

Bacterial blight, caused by Xanthomonas axonopodis pv. punicae, Xap is a serious threat to commercially successful pomegranate (Punica granatum L) crop. Owing to the non-availability of disease-resistant varieties of pomegranate, integrated disease management involving change of season, adequate nutrition, and preventive sprays of bactericides is used to control Xap. We undertook a systematic study to assess the efficacy of metal-based nanomaterials (Cu, CuO, ZnO, CaO, MgO) for the control of Xap. The antimicrobial effectiveness was in the order Cu > ZnO > MgO > CuO with MIC (minimum inhibitory concentration) 2.5, 20, 190, 200, and 1600 µg/ml. A time-to-kill curve indicated that Cu nanoparticles (CuNPs) killed Xap cells within 30 min at 2.5 µg/ml. Under controlled conditions (polyhouse), foliar application of CuNPs (400 µg/ml) resulted in ~ 90 and ~ 15% disease reduction in 6-month-old infected plants at early (disease severity 10%) and established (disease severity 40%) stages of infection, respectively. In a subsequent field study on severely infected 7-year-old plants, applications of nanoparticles reduced the disease incidence by ~ 20% as compared to untreated control. Microscopic observations revealed that CuNPs reduced the bacterial colonization of the leaf surface. Anti-Xap activity of foliar applied CuNPs was on par with conventionally used copper oxychloride (3000 µg/ml) albeit at 8-fold reduced copper concentration. Thus, early disease detection and application of effective dosage of copper nanoparticles can indeed help the farmer in achieving rapid infection control. Further studies on use of combinations of nanoparticles for management of bacterial blight are warranted.


Assuntos
Antibacterianos/metabolismo , Lythraceae/microbiologia , Nanopartículas Metálicas , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Xanthomonas/efeitos dos fármacos , Agricultura/métodos , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Incidência , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA