Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
HGG Adv ; 5(4): 100345, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39182167

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder (NDD) that affects approximately 4% of males and 1% of females in the United States. While causes of ASD are multi-factorial, single rare genetic variants contribute to around 20% of cases. Here, we report a case series of seven unrelated probands (6 males, 1 female) with ASD or another variable NDD phenotype attributed to de novo heterozygous loss of function or missense variants in the gene LARP1 (La ribonucleoprotein 1). LARP1 encodes an RNA-binding protein that post-transcriptionally regulates the stability and translation of thousands of mRNAs, including those regulating cellular metabolism and metabolic plasticity. Using lymphocytes collected and immortalized from an index proband who carries a truncating variant in one allele of LARP1, we demonstrated that lower cellular levels of LARP1 protein cause reduced rates of aerobic respiration and glycolysis. As expression of LARP1 increases during neurodevelopment, with higher levels in neurons and astrocytes, we propose that LARP1 haploinsufficiency contributes to ASD or related NDDs through attenuated metabolic activity in the developing fetal brain.


Assuntos
Transtorno do Espectro Autista , Haploinsuficiência , Transtornos do Neurodesenvolvimento , Proteínas com Motivo de Reconhecimento de RNA , Ribonucleoproteínas , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Transtorno do Espectro Autista/genética , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/genética , Ribonucleoproteínas/genética , Proteínas com Motivo de Reconhecimento de RNA/genética
2.
Plant Direct ; 7(8): e524, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37638229

RESUMO

Phloem is a critical tissue for transport of photosynthates and extracellular signals in vascular plants. However, it also represents an ideal environment for pathogens seeking access to valuable host nutrients. Although many vascular pathogens induce economically relevant crop damage, there is still little known about the mechanisms by which immune signaling operates through the phloem. An existing phosphoproteomic dataset was mined to identify proteins that were both phosphorylated in response to the defense-elicitor flagellin (flg22) and expressed in vascular cells. A single candidate, OCTOPUS (OPS), is polarly associated with the plasma membrane of sieve element cells and has been characterized as an inhibitor of brassinosteroid insensitive-2 in promotion of brassinosteroid-related phytohormone signaling. The observation that OPS is differentially phosphorylated in response to flg22 led us to the examine whether OPS may also regulate flg22-induced immune signaling. Two independent alleles of ops exhibited enhanced immunity outputs across multiple signaling branches of PAMP-triggered immunity (PTI), constitutively and in response to flg22 treatment. Together with our observation that interactions between OPS and brassinosteroid insensitive-2 were disrupted by induction of salicylic acid and depletion of brassinosteriod, these data support a model whereby OPS modulates brassinolide and immune signaling to control downstream responses. We present OPS as a novel addition to the list of proteins with documented roles in PAMP-PTI signaling. These results further indicate that immune signaling in the phloem may be a significant and unique component of the host detection and response to pathogens in vascular plants.

3.
Cytogenet Genome Res ; 163(1-2): 14-23, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37497920

RESUMO

Chromosome 2p (chr2p) duplication, also known as trisomy 2p, is a rare chromosome abnormality associated with developmental delay, intellectual disability, behavioral problems, and distinctive facial features. Most of the reported cases involving trisomy 2p include additional copy number variants (CNVs) in other regions of the genome and are usually small in size. Little is known about the clinical outcomes of large duplications of chr2p as the sole cytogenetic abnormality. In this study, 193 samples at the Greenwood Genetic Center (GGC) with CNVs involving chr2p were evaluated, out of which 86 had chr2p duplications. Among them, 8 patients were identified with large chr2p duplications ranging in size from 9.3 Mb to 89 Mb, and no deletions or duplications involving other chromosomes were identified in those patients. These duplications were associated with inverted duplication, tandem duplication, and duplication as the result of translocation, with no additional CNVs identified by microarray analysis. Confirmation by conventional cytogenetics was performed in 7 of the 8 patients, and the translocations were confirmed by fluorescence in situ hybridization. Interestingly, 1 patient was found to have mosaic complete trisomy 2p as the result of an unbalanced de novo (X;2) chromosomal translocation. X-inactivation was skewed toward the derivative X chromosome, yet it did not appear to extend into the chromosome 2 material. Various shared clinical manifestations were observed in the individuals in this study, including developmental delay, hemifacial hypoplasia, cleft palate, and short stature, and they also have distinct features such as hypotonia, cerebellar hypogenesis, and corpus callosum agenesis, which might result from a gene dosage effect of the duplication. In conclusion, single-event large chr2p duplications can result from different mechanisms, including inverted or tandem duplications within chromosome 2, or translocations involving chromosome 2 and other chromosomes. Partial or complete trisomy 2p is commonly associated with developmental delay, and additional clinical features may be related to gene dosage effects.


Assuntos
Duplicação Cromossômica , Trissomia , Humanos , Hibridização in Situ Fluorescente , Trissomia/genética , Duplicação Cromossômica/genética , Aberrações Cromossômicas , Cromossomos Humanos Par 2/genética , Translocação Genética
4.
Proc Natl Acad Sci U S A ; 120(15): e2208116120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011184

RESUMO

The expansion of agriculture is responsible for the mass conversion of biologically diverse natural environments into managed agroecosystems dominated by a handful of genetically homogeneous crop species. Agricultural ecosystems typically have very different abiotic and ecological conditions from those they replaced and create potential niches for those species that are able to exploit the abundant resources offered by crop plants. While there are well-studied examples of crop pests that have adapted into novel agricultural niches, the impact of agricultural intensification on the evolution of crop mutualists such as pollinators is poorly understood. We combined genealogical inference from genomic data with archaeological records to demonstrate that the Holocene demographic history of a wild specialist pollinator of Cucurbita (pumpkins, squashes, and gourds) has been profoundly impacted by the history of agricultural expansion in North America. Populations of the squash bee Eucera pruinosa experienced rapid growth in areas where agriculture intensified within the past 1,000 y, suggesting that the cultivation of Cucurbita in North America has increased the amount of floral resources available to these bees. In addition, we found that roughly 20% of this bee species' genome shows signatures of recent selective sweeps. These signatures are overwhelmingly concentrated in populations from eastern North America where squash bees were historically able to colonize novel environments due to human cultivation of Cucurbita pepo and now exclusively inhabit agricultural niches. These results suggest that the widespread cultivation of crops can prompt adaptation in wild pollinators through the distinct ecological conditions imposed by agricultural environments.


Assuntos
Cucurbita , Humanos , Animais , Abelhas , Cucurbita/genética , Ecossistema , Polinização , Agricultura , Produtos Agrícolas
5.
Genome Biol Evol ; 15(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36792366

RESUMO

Long-read sequencing has revolutionized genome assembly, yielding highly contiguous, chromosome-level contigs. However, assemblies from some third generation long read technologies, such as Pacific Biosciences (PacBio) continuous long reads (CLR), have a high error rate. Such errors can be corrected with short reads through a process called polishing. Although best practices for polishing non-model de novo genome assemblies were recently described by the Vertebrate Genome Project (VGP) Assembly community, there is a need for a publicly available, reproducible workflow that can be easily implemented and run on a conventional high performance computing environment. Here, we describe polishCLR (https://github.com/isugifNF/polishCLR), a reproducible Nextflow workflow that implements best practices for polishing assemblies made from CLR data. PolishCLR can be initiated from several input options that extend best practices to suboptimal cases. It also provides re-entry points throughout several key processes, including identifying duplicate haplotypes in purge_dups, allowing a break for scaffolding if data are available, and throughout multiple rounds of polishing and evaluation with Arrow and FreeBayes. PolishCLR is containerized and publicly available for the greater assembly community as a tool to complete assemblies from existing, error-prone long-read data.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Fluxo de Trabalho , Haplótipos
6.
G3 (Bethesda) ; 13(4)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36790801

RESUMO

The pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), is a major global pest of cotton. Current management practices include chemical insecticides, cultural strategies, sterile insect releases, and transgenic cotton producing crystalline (Cry) protein toxins of the bacterium Bacillus thuringiensis (Bt). These strategies have contributed to the eradication of P. gossypiella from the cotton-growing areas of the United States and northern Mexico. However, this pest has evolved resistance to Bt cotton in Asia, where it remains a critical pest, and the benefits of using transgenic Bt crops have been lost. A complete annotated reference genome is needed to improve global Bt resistance management of the pink bollworm. We generated the first chromosome-level genome assembly for pink bollworm from a Bt-susceptible laboratory strain (APHIS-S) using PacBio continuous long reads for contig generation, Illumina Hi-C for scaffolding, and Illumina whole-genome re-sequencing for error correction. The pseudo-haploid assembly consists of 29 autosomes and the Z sex chromosome. The assembly exceeds the minimum Earth BioGenome Project quality standards, has a low error rate, is highly contiguous at both the contig and scaffold levels (L/N50 of 18/8.26 MB and 14/16.44 MB, respectively), and is complete, with 98.6% of lepidopteran single-copy orthologs represented without duplication. The genome was annotated with 50% repeat content and 14,107 protein-coding genes, further assigned to 41,666 functional annotations. This assembly represents the first publicly available complete annotated genome of pink bollworm and will serve as the foundation for advancing molecular genetics of this important pest species.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Resistência a Inseticidas/genética , Plantas Geneticamente Modificadas/genética , Proteínas de Bactérias/genética , Mariposas/genética , Mariposas/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Cromossomos/metabolismo , Gossypium/genética , Gossypium/metabolismo
7.
G3 (Bethesda) ; 13(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36454104

RESUMO

The boll weevil, Anthonomus grandis grandis Boheman, is one of the most historically impactful insects due to its near destruction of the US cotton industry in the early 20th century. Contemporary efforts to manage this insect primarily use pheromone baited traps for detection and organophosphate insecticides for control, but this strategy is not sustainable due to financial and environmental costs. We present a high-quality boll weevil genome assembly, consisting of 306 scaffolds with approximately 24,000 annotated genes, as a first step in the identification of gene targets for novel pest control. Gene content and transposable element distribution are similar to those found in other Curculionidae genomes; however, this is the most contiguous and only assembly reported to date for a member in the species-rich genus Anthonomus. Transcriptome profiles across larval, pupal, and adult life stages led to identification of several genes and gene families that could present targets for novel control strategies.


Assuntos
Besouros , Inseticidas , Gorgulhos , Animais , Gorgulhos/genética , Besouros/genética , Larva , Biologia , Gossypium
8.
Genome Biol Evol ; 15(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35959935

RESUMO

Helicoverpa zea (Lepidoptera: Noctuidae) is an insect pest of major cultivated crops in North and South America. The species has adapted to different host plants and developed resistance to several insecticidal agents, including Bacillus thuringiensis (Bt) insecticidal proteins in transgenic cotton and maize. Helicoverpa zea populations persist year-round in tropical and subtropical regions, but seasonal migrations into temperate zones increase the geographic range of associated crop damage. To better understand the genetic basis of these physiological and ecological characteristics, we generated a high-quality chromosome-level assembly for a single H. zea male from Bt-resistant strain, HzStark_Cry1AcR. Hi-C data were used to scaffold an initial 375.2 Mb contig assembly into 30 autosomes and the Z sex chromosome (scaffold N50 = 12.8 Mb and L50 = 14). The scaffolded assembly was error-corrected with a novel pipeline, polishCLR. The mitochondrial genome was assembled through an improved pipeline and annotated. Assessment of this genome assembly indicated 98.8% of the Lepidopteran Benchmark Universal Single-Copy Ortholog set were complete (98.5% as complete single copy). Repetitive elements comprised approximately 29.5% of the assembly with the plurality (11.2%) classified as retroelements. This chromosome-scale reference assembly for H. zea, ilHelZeax1.1, will facilitate future research to evaluate and enhance sustainable crop production practices.


Assuntos
Bacillus thuringiensis , Inseticidas , Lepidópteros , Mariposas , Animais , Inseticidas/farmacologia , Bacillus thuringiensis/genética , Zea mays , Cromossomos Sexuais , Proteínas de Bactérias/genética , Plantas Geneticamente Modificadas , Proteínas Hemolisinas/genética , Mariposas/genética , Controle Biológico de Vetores , Larva
9.
Brain ; 146(2): 534-548, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35979925

RESUMO

We describe an autosomal dominant disorder associated with loss-of-function variants in the Cell cycle associated protein 1 (CAPRIN1; MIM*601178). CAPRIN1 encodes a ubiquitous protein that regulates the transport and translation of neuronal mRNAs critical for synaptic plasticity, as well as mRNAs encoding proteins important for cell proliferation and migration in multiple cell types. We identified 12 cases with loss-of-function CAPRIN1 variants, and a neurodevelopmental phenotype characterized by language impairment/speech delay (100%), intellectual disability (83%), attention deficit hyperactivity disorder (82%) and autism spectrum disorder (67%). Affected individuals also had respiratory problems (50%), limb/skeletal anomalies (50%), developmental delay (42%) feeding difficulties (33%), seizures (33%) and ophthalmologic problems (33%). In patient-derived lymphoblasts and fibroblasts, we showed a monoallelic expression of the wild-type allele, and a reduction of the transcript and protein compatible with a half dose. To further study pathogenic mechanisms, we generated sCAPRIN1+/- human induced pluripotent stem cells via CRISPR-Cas9 mutagenesis and differentiated them into neuronal progenitor cells and cortical neurons. CAPRIN1 loss caused reduced neuronal processes, overall disruption of the neuronal organization and an increased neuronal degeneration. We also observed an alteration of mRNA translation in CAPRIN1+/- neurons, compatible with its suggested function as translational inhibitor. CAPRIN1+/- neurons also showed an impaired calcium signalling and increased oxidative stress, two mechanisms that may directly affect neuronal networks development, maintenance and function. According to what was previously observed in the mouse model, measurements of activity in CAPRIN1+/- neurons via micro-electrode arrays indicated lower spike rates and bursts, with an overall reduced activity. In conclusion, we demonstrate that CAPRIN1 haploinsufficiency causes a novel autosomal dominant neurodevelopmental disorder and identify morphological and functional alterations associated with this disorder in human neuronal models.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Células-Tronco Pluripotentes Induzidas , Transtornos do Desenvolvimento da Linguagem , Transtornos do Neurodesenvolvimento , Animais , Camundongos , Humanos , Transtorno do Espectro Autista/genética , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/complicações , Transtornos do Neurodesenvolvimento/genética , Proteínas/genética , Proteínas de Ciclo Celular/genética
10.
Genet Med ; 25(1): 63-75, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399132

RESUMO

PURPOSE: Witteveen-Kolk syndrome (WITKOS) is a rare, autosomal dominant neurodevelopmental disorder caused by heterozygous loss-of-function alterations in the SIN3A gene. WITKOS has variable expressivity that commonly overlaps with other neurodevelopmental disorders. In this study, we characterized a distinct DNA methylation epigenetic signature (episignature) distinguishing WITKOS from unaffected individuals as well as individuals with other neurodevelopmental disorders with episignatures and described 9 previously unpublished individuals with SIN3A haploinsufficiency. METHODS: We studied the phenotypic characteristics and the genome-wide DNA methylation in the peripheral blood samples of 20 individuals with heterozygous alterations in SIN3A. A total of 14 samples were used for the identification of the episignature and building of a predictive diagnostic biomarker, whereas the diagnostic model was used to investigate the methylation pattern of the remaining 6 samples. RESULTS: A predominantly hypomethylated DNA methylation profile specific to WITKOS was identified, and the classifier model was able to diagnose a previously unresolved test case. The episignature was sensitive enough to detect individuals with varying degrees of phenotypic severity carrying SIN3A haploinsufficient variants. CONCLUSION: We identified a novel, robust episignature in WITKOS due to SIN3A haploinsufficiency. This episignature has the potential to aid identification and diagnosis of individuals with WITKOS.


Assuntos
Metilação de DNA , Transtornos do Neurodesenvolvimento , Humanos , Metilação de DNA/genética , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/genética , Genoma
11.
Hum Mol Genet ; 31(19): 3325-3340, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35604360

RESUMO

Intellectual disability (ID) is a neurodevelopmental disorder frequently caused by monogenic defects. In this study, we collected 14 SEMA6B heterozygous variants in 16 unrelated patients referred for ID to different centers. Whereas, until now, SEMA6B variants have mainly been reported in patients with progressive myoclonic epilepsy, our study indicates that the clinical spectrum is wider and also includes non-syndromic ID without epilepsy or myoclonus. To assess the pathogenicity of these variants, selected mutated forms of Sema6b were overexpressed in Human Embryonic Kidney 293T (HEK293T) cells and in primary neuronal cultures. shRNAs targeting Sema6b were also used in neuronal cultures to measure the impact of the decreased Sema6b expression on morphogenesis and synaptogenesis. The overexpression of some variants leads to a subcellular mislocalization of SEMA6B protein in HEK293T cells and to a reduced spine density owing to loss of mature spines in neuronal cultures. Sema6b knockdown also impairs spine density and spine maturation. In addition, we conducted in vivo rescue experiments in chicken embryos with the selected mutated forms of Sema6b expressed in commissural neurons after knockdown of endogenous SEMA6B. We observed that expression of these variants in commissural neurons fails to rescue the normal axon pathway. In conclusion, identification of SEMA6B variants in patients presenting with an overlapping phenotype with ID and functional studies highlight the important role of SEMA6B in neuronal development, notably in spine formation and maturation and in axon guidance. This study adds SEMA6B to the list of ID-related genes.


Assuntos
Epilepsia , Deficiência Intelectual , Semaforinas , Animais , Orientação de Axônios , Embrião de Galinha , Espinhas Dendríticas , Epilepsia/genética , Células HEK293 , Humanos , Deficiência Intelectual/genética , Semaforinas/genética
12.
Virol J ; 19(1): 12, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033134

RESUMO

In 1977, a sample of diseased adult honeybees (Apis mellifera) from Egypt was found to contain large amounts of a previously unknown virus, Egypt bee virus, which was subsequently shown to be serologically related to deformed wing virus (DWV). By sequencing the original isolate, we demonstrate that Egypt bee virus is in fact a fourth unique, major variant of DWV (DWV-D): more closely related to DWV-C than to either DWV-A or DWV-B. DWV-A and DWV-B are the most common DWV variants worldwide due to their close relationship and transmission by Varroa destructor. However, we could not find any trace of DWV-D in several hundred RNA sequencing libraries from a worldwide selection of honeybee, varroa and bumblebee samples. This means that DWV-D has either become extinct, been replaced by other DWV variants better adapted to varroa-mediated transmission, or persists only in a narrow geographic or host range, isolated from common bee and beekeeping trade routes.


Assuntos
Vírus de RNA , Varroidae , Animais , Abelhas , Vírus de DNA , Egito , Vírus de RNA/genética
14.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042801

RESUMO

Life on Earth has evolved from initial simplicity to the astounding complexity we experience today. Bacteria and archaea have largely excelled in metabolic diversification, but eukaryotes additionally display abundant morphological innovation. How have these innovations come about and what constraints are there on the origins of novelty and the continuing maintenance of biodiversity on Earth? The history of life and the code for the working parts of cells and systems are written in the genome. The Earth BioGenome Project has proposed that the genomes of all extant, named eukaryotes-about 2 million species-should be sequenced to high quality to produce a digital library of life on Earth, beginning with strategic phylogenetic, ecological, and high-impact priorities. Here we discuss why we should sequence all eukaryotic species, not just a representative few scattered across the many branches of the tree of life. We suggest that many questions of evolutionary and ecological significance will only be addressable when whole-genome data representing divergences at all of the branchings in the tree of life or all species in natural ecosystems are available. We envisage that a genomic tree of life will foster understanding of the ongoing processes of speciation, adaptation, and organismal dependencies within entire ecosystems. These explorations will resolve long-standing problems in phylogenetics, evolution, ecology, conservation, agriculture, bioindustry, and medicine.


Assuntos
Sequência de Bases/genética , Eucariotos/genética , Genômica/ética , Animais , Biodiversidade , Evolução Biológica , Ecologia , Ecossistema , Genoma , Genômica/métodos , Humanos , Filogenia
15.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042802

RESUMO

A global international initiative, such as the Earth BioGenome Project (EBP), requires both agreement and coordination on standards to ensure that the collective effort generates rapid progress toward its goals. To this end, the EBP initiated five technical standards committees comprising volunteer members from the global genomics scientific community: Sample Collection and Processing, Sequencing and Assembly, Annotation, Analysis, and IT and Informatics. The current versions of the resulting standards documents are available on the EBP website, with the recognition that opportunities, technologies, and challenges may improve or change in the future, requiring flexibility for the EBP to meet its goals. Here, we describe some highlights from the proposed standards, and areas where additional challenges will need to be met.


Assuntos
Sequência de Bases/genética , Eucariotos/genética , Genômica/normas , Animais , Biodiversidade , Genômica/métodos , Humanos , Padrões de Referência , Valores de Referência , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas
16.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37489752

RESUMO

BACKGROUND: The small hive beetle (SHB), Aethina tumida, has emerged as a worldwide threat to honey bees in the past two decades. These beetles harvest nest resources, feed on larval bees, and ultimately spoil nest resources with gelatinous slime together with the fungal symbiont Kodamaea ohmeri. RESULTS: Here, we present the first chromosome-level genome assembly for the SHB. With a 99.1% representation of conserved (BUSCO) arthropod genes, this resource enables the study of chemosensory, digestive, and detoxification traits critical for SHB success and possible control. We use this annotated assembly to characterize features of SHB sex chromosomes and a female-skewed primary sex ratio. We also found chromosome fusion and a lower recombination rate in sex chromosomes than in autosomes. CONCLUSIONS: Genome-enabled insights will clarify the traits that allowed this beetle to exploit hive resources successfully and will be critical for determining the causes of observed sex ratio asymmetries.


Assuntos
Besouros , Parasitos , Animais , Feminino , Abelhas , Larva , Cromossomos Sexuais , Razão de Masculinidade , Masculino
17.
Insects ; 12(7)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34357286

RESUMO

The phylum Arthropoda includes species crucial for ecosystem stability, soil health, crop production, and others that present obstacles to crop and animal agriculture. The United States Department of Agriculture's Agricultural Research Service initiated the Ag100Pest Initiative to generate reference genome assemblies of arthropods that are (or may become) pests to agricultural production and global food security. We describe the project goals, process, status, and future. The first three years of the project were focused on species selection, specimen collection, and the construction of lab and bioinformatics pipelines for the efficient production of assemblies at scale. Contig-level assemblies of 47 species are presented, all of which were generated from single specimens. Lessons learned and optimizations leading to the current pipeline are discussed. The project name implies a target of 100 species, but the efficiencies gained during the project have supported an expansion of the original goal and a total of 158 species are currently in the pipeline. We anticipate that the processes described in the paper will help other arthropod research groups or other consortia considering genome assembly at scale.

18.
Insects ; 12(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34442314

RESUMO

Genome sequencing of a diverse array of arthropod genomes is already underway, and these genomes will be used to study human health, agriculture, biodiversity, and ecology. These new genomes are intended to serve as community resources and provide the foundational information required to apply 'omics technologies to a more diverse set of species. However, biologists require genome annotation to use these genomes and derive a better understanding of complex biological systems. Genome annotation incorporates two related, but distinct, processes: Demarcating genes and other elements present in genome sequences (structural annotation); and associating a function with genetic elements (functional annotation). While there are well-established and freely available workflows for structural annotation of gene identification in newly assembled genomes, workflows for providing the functional annotation required to support functional genomics studies are less well understood. Genome-scale functional annotation is required for functional modeling (enrichment, networks, etc.). A first-pass genome-wide functional annotation effort can rapidly identify under-represented gene sets for focused community annotation efforts. We present an open-source, open access, and containerized pipeline for genome-scale functional annotation of insect proteomes and apply it to various arthropod species. We show that the performance of the predictions is consistent across a set of arthropod genomes with varying assembly and annotation quality.

19.
Commun Biol ; 2: 357, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31583288

RESUMO

Multispecies host-parasite evolution is common, but how parasites evolve after speciating remains poorly understood. Shared evolutionary history and physiology may propel species along similar evolutionary trajectories whereas pursuing different strategies can reduce competition. We test these scenarios in the economically important association between honey bees and ectoparasitic mites by sequencing the genomes of the sister mite species Varroa destructor and Varroa jacobsoni. These genomes were closely related, with 99.7% sequence identity. Among the 9,628 orthologous genes, 4.8% showed signs of positive selection in at least one species. Divergent selective trajectories were discovered in conserved chemosensory gene families (IGR, SNMP), and Halloween genes (CYP) involved in moulting and reproduction. However, there was little overlap in these gene sets and associated GO terms, indicating different selective regimes operating on each of the parasites. Based on our findings, we suggest that species-specific strategies may be needed to combat evolving parasite communities.


Assuntos
Abelhas/parasitologia , Evolução Molecular , Varroidae/genética , Animais , Sistema Enzimático do Citocromo P-450/genética , DNA Mitocondrial , Feminino , Interações Hospedeiro-Parasita , Masculino , Especificidade da Espécie
20.
Gigascience ; 8(10)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31609423

RESUMO

BACKGROUND: A high-quality reference genome is an essential tool for applied and basic research on arthropods. Long-read sequencing technologies may be used to generate more complete and contiguous genome assemblies than alternate technologies; however, long-read methods have historically had greater input DNA requirements and higher costs than next-generation sequencing, which are barriers to their use on many samples. Here, we present a 2.3 Gb de novo genome assembly of a field-collected adult female spotted lanternfly (Lycorma delicatula) using a single Pacific Biosciences SMRT Cell. The spotted lanternfly is an invasive species recently discovered in the northeastern United States that threatens to damage economically important crop plants in the region. RESULTS: The DNA from 1 individual was used to make 1 standard, size-selected library with an average DNA fragment size of ∼20 kb. The library was run on 1 Sequel II SMRT Cell 8M, generating a total of 132 Gb of long-read sequences, of which 82 Gb were from unique library molecules, representing ∼36× coverage of the genome. The assembly had high contiguity (contig N50 length = 1.5 Mb), completeness, and sequence level accuracy as estimated by conserved gene set analysis (96.8% of conserved genes both complete and without frame shift errors). Furthermore, it was possible to segregate more than half of the diploid genome into the 2 separate haplotypes. The assembly also recovered 2 microbial symbiont genomes known to be associated with L. delicatula, each microbial genome being assembled into a single contig. CONCLUSIONS: We demonstrate that field-collected arthropods can be used for the rapid generation of high-quality genome assemblies, an attractive approach for projects on emerging invasive species, disease vectors, or conservation efforts of endangered species.


Assuntos
Dípteros/genética , Genoma de Inseto , Genômica/métodos , Animais , Feminino , Biblioteca Gênica , Espécies Introduzidas , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA