Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Br J Cancer ; 125(12): 1712-1717, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34703010

RESUMO

INTRODUCTION: Identifying families with an underlying inherited cancer predisposition is a major goal of cancer prevention efforts. Mendelian risk models have been developed to better predict the risk associated with a pathogenic variant of developing breast/ovarian cancer (with BRCAPRO) and the risk of developing pancreatic cancer (PANCPRO). Given that pathogenic variants involving BRCA2 and BRCA1 predispose to all three of these cancers, we developed a joint risk model to capture shared susceptibility. METHODS: We expanded the existing framework for PANCPRO and BRCAPRO to jointly model risk of pancreatic, breast, and ovarian cancer and validated this new model, BRCAPANCPRO on three data sets each reflecting the common target populations. RESULTS: BRCAPANCPRO outperformed the prior BRCAPRO and PANCPRO models and yielded good discrimination for differentiating BRCA1 and BRCA2 carriers from non-carriers (AUCs 0.79, 95% CI: 0.73-0.84 and 0.70, 95% CI: 0.60-0.80) in families seen in high-risk clinics and pancreatic cancer family registries, respectively. In addition, BRCAPANCPRO was reasonably well calibrated for predicting future risk of pancreatic cancer (observed-to-expected (O/E) ratio = 0.81 [0.69, 0.94]). DISCUSSION: The BRCAPANCPRO model provides improved risk assessment over our previous risk models, particularly for pedigrees with a co-occurrence of pancreatic cancer and breast and/or ovarian cancer.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias Ovarianas/diagnóstico , Neoplasias Pancreáticas/diagnóstico , Feminino , Humanos , Masculino , Anamnese , Medição de Risco
2.
Am J Clin Nutr ; 114(4): 1408-1417, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34258619

RESUMO

BACKGROUND: Epidemiological studies have suggested positive associations for iron and red meat intake with risk of pancreatic ductal adenocarcinoma (PDAC). Inherited pathogenic variants in genes involved in the hepcidin-regulating iron metabolism pathway are known to cause iron overload and hemochromatosis. OBJECTIVES: The objective of this study was to determine whether common genetic variation in the hepcidin-regulating iron metabolism pathway is associated with PDAC. METHODS: We conducted a pathway analysis of the hepcidin-regulating genes using single nucleotide polymorphism (SNP) summary statistics generated from 4 genome-wide association studies in 2 large consortium studies using the summary data-based adaptive rank truncated product method. Our population consisted of 9253 PDAC cases and 12,525 controls of European descent. Our analysis included 11 hepcidin-regulating genes [bone morphogenetic protein 2 (BMP2), bone morphogenetic protein 6 (BMP6), ferritin heavy chain 1 (FTH1), ferritin light chain (FTL), hepcidin (HAMP), homeostatic iron regulator (HFE), hemojuvelin (HJV), nuclear factor erythroid 2-related factor 2 (NRF2), ferroportin 1 (SLC40A1), transferrin receptor 1 (TFR1), and transferrin receptor 2 (TFR2)] and their surrounding genomic regions (±20 kb) for a total of 412 SNPs. RESULTS: The hepcidin-regulating gene pathway was significantly associated with PDAC (P = 0.002), with the HJV, TFR2, TFR1, BMP6, and HAMP genes contributing the most to the association. CONCLUSIONS: Our results support that genetic susceptibility related to the hepcidin-regulating gene pathway is associated with PDAC risk and suggest a potential role of iron metabolism in pancreatic carcinogenesis. Further studies are needed to evaluate effect modification by intake of iron-rich foods on this association.


Assuntos
Adenocarcinoma/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Hepcidinas/metabolismo , Ferro/metabolismo , Neoplasias Pancreáticas/metabolismo , Idoso , Estudos de Casos e Controles , Feminino , Genótipo , Hepcidinas/genética , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
3.
Cancer Res ; 81(11): 3134-3143, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33574088

RESUMO

Germline variation and smoking are independently associated with pancreatic ductal adenocarcinoma (PDAC). We conducted genome-wide smoking interaction analysis of PDAC using genotype data from four previous genome-wide association studies in individuals of European ancestry (7,937 cases and 11,774 controls). Examination of expression quantitative trait loci data from the Genotype-Tissue Expression Project followed by colocalization analysis was conducted to determine whether there was support for common SNP(s) underlying the observed associations. Statistical tests were two sided and P < 5 × 10-8 was considered statistically significant. Genome-wide significant evidence of qualitative interaction was identified on chr2q21.3 in intron 5 of the transmembrane protein 163 (TMEM163) and upstream of the cyclin T2 (CCNT2). The most significant SNP using the Empirical Bayes method, in this region that included 45 significantly associated SNPs, was rs1818613 [per allele OR in never smokers 0.87, 95% confidence interval (CI), 0.82-0.93; former smokers 1.00, 95% CI, 0.91-1.07; current smokers 1.25, 95% CI 1.12-1.40, P interaction = 3.08 × 10-9). Examination of the Genotype-Tissue Expression Project data demonstrated an expression quantitative trait locus in this region for TMEM163 and CCNT2 in several tissue types. Colocalization analysis supported a shared SNP, rs842357, in high linkage disequilibrium with rs1818613 (r 2 = 0. 94) driving both the observed interaction and the expression quantitative trait loci signals. Future studies are needed to confirm and understand the differential biologic mechanisms by smoking status that contribute to our PDAC findings. SIGNIFICANCE: This large genome-wide interaction study identifies a susceptibility locus on 2q21.3 that significantly modified PDAC risk by smoking status, providing insight into smoking-associated PDAC, with implications for prevention.


Assuntos
Carcinoma Ductal Pancreático/patologia , Cromossomos Humanos Par 2/genética , Predisposição Genética para Doença , Neoplasias Pancreáticas/patologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Fumar/efeitos adversos , Carcinoma Ductal Pancreático/etiologia , Carcinoma Ductal Pancreático/metabolismo , Ciclina T/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Proteínas de Membrana/genética , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/metabolismo , Fatores de Risco , Fumar/genética
4.
J Natl Cancer Inst ; 112(10): 1003-1012, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31917448

RESUMO

BACKGROUND: Although 20 pancreatic cancer susceptibility loci have been identified through genome-wide association studies in individuals of European ancestry, much of its heritability remains unexplained and the genes responsible largely unknown. METHODS: To discover novel pancreatic cancer risk loci and possible causal genes, we performed a pancreatic cancer transcriptome-wide association study in Europeans using three approaches: FUSION, MetaXcan, and Summary-MulTiXcan. We integrated genome-wide association studies summary statistics from 9040 pancreatic cancer cases and 12 496 controls, with gene expression prediction models built using transcriptome data from histologically normal pancreatic tissue samples (NCI Laboratory of Translational Genomics [n = 95] and Genotype-Tissue Expression v7 [n = 174] datasets) and data from 48 different tissues (Genotype-Tissue Expression v7, n = 74-421 samples). RESULTS: We identified 25 genes whose genetically predicted expression was statistically significantly associated with pancreatic cancer risk (false discovery rate < .05), including 14 candidate genes at 11 novel loci (1p36.12: CELA3B; 9q31.1: SMC2, SMC2-AS1; 10q23.31: RP11-80H5.9; 12q13.13: SMUG1; 14q32.33: BTBD6; 15q23: HEXA; 15q26.1: RCCD1; 17q12: PNMT, CDK12, PGAP3; 17q22: SUPT4H1; 18q11.22: RP11-888D10.3; and 19p13.11: PGPEP1) and 11 at six known risk loci (5p15.33: TERT, CLPTM1L, ZDHHC11B; 7p14.1: INHBA; 9q34.2: ABO; 13q12.2: PDX1; 13q22.1: KLF5; and 16q23.1: WDR59, CFDP1, BCAR1, TMEM170A). The association for 12 of these genes (CELA3B, SMC2, and PNMT at novel risk loci and TERT, CLPTM1L, INHBA, ABO, PDX1, KLF5, WDR59, CFDP1, and BCAR1 at known loci) remained statistically significant after Bonferroni correction. CONCLUSIONS: By integrating gene expression and genotype data, we identified novel pancreatic cancer risk loci and candidate functional genes that warrant further investigation.


Assuntos
Neoplasias Pancreáticas/genética , Bases de Dados Genéticas , Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Transcriptoma
5.
Cancer Epidemiol Biomarkers Prev ; 28(7): 1238-1245, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31015203

RESUMO

BACKGROUND: Pancreatic cancer is the fourth-leading cause of cancer death in both men and women in the United States. The currently identified common susceptibility loci account for a small fraction of estimated heritability. We sought to estimate overall heritability of pancreatic cancer and partition the heritability by variant frequencies and functional annotations. METHODS: Analysis using the genome-based restricted maximum likelihood method (GREML) was conducted on Pancreatic Cancer Case-Control Consortium (PanC4) genome-wide association study (GWAS) data from 3,568 pancreatic cancer cases and 3,363 controls of European Ancestry. RESULTS: Applying linkage disequilibrium- and minor allele frequency-stratified GREML (GREML-LDMS) method to imputed GWAS data, we estimated the overall heritability of pancreatic cancer to be 21.2% (SE = 4.8%). Across the functional groups (intronic, intergenic, coding, and regulatory variants), intronic variants account for most of the estimated heritability (12.4%). Previously identified GWAS loci explained 4.1% of the total phenotypic variation of pancreatic cancer. Mutations in hereditary pancreatic cancer susceptibility genes are present in 4% to 10% of patients with pancreatic cancer, yet our GREML-LDMS results suggested these regions explain only 0.4% of total phenotypic variance for pancreatic cancer. CONCLUSIONS: Although higher than previous studies, our estimated 21.2% overall heritability may still be downwardly biased due to the inherent limitation that the contribution of rare variants in genes with a substantive overall impact on disease are not captured when applying these commonly used methods to imputed GWAS data. IMPACT: Our work demonstrated the importance of rare and common variants in pancreatic cancer risk.


Assuntos
Neoplasias Pancreáticas/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/patologia
6.
J Natl Cancer Inst ; 111(6): 557-567, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541042

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) identify associations of individual single-nucleotide polymorphisms (SNPs) with cancer risk but usually only explain a fraction of the inherited variability. Pathway analysis of genetic variants is a powerful tool to identify networks of susceptibility genes. METHODS: We conducted a large agnostic pathway-based meta-analysis of GWAS data using the summary-based adaptive rank truncated product method to identify gene sets and pathways associated with pancreatic ductal adenocarcinoma (PDAC) in 9040 cases and 12 496 controls. We performed expression quantitative trait loci (eQTL) analysis and functional annotation of the top SNPs in genes contributing to the top associated pathways and gene sets. All statistical tests were two-sided. RESULTS: We identified 14 pathways and gene sets associated with PDAC at a false discovery rate of less than 0.05. After Bonferroni correction (P ≤ 1.3 × 10-5), the strongest associations were detected in five pathways and gene sets, including maturity-onset diabetes of the young, regulation of beta-cell development, role of epidermal growth factor (EGF) receptor transactivation by G protein-coupled receptors in cardiac hypertrophy pathways, and the Nikolsky breast cancer chr17q11-q21 amplicon and Pujana ATM Pearson correlation coefficient (PCC) network gene sets. We identified and validated rs876493 and three correlating SNPs (PGAP3) and rs3124737 (CASP7) from the Pujana ATM PCC gene set as eQTLs in two normal derived pancreas tissue datasets. CONCLUSION: Our agnostic pathway and gene set analysis integrated with functional annotation and eQTL analysis provides insight into genes and pathways that may be biologically relevant for risk of PDAC, including those not previously identified.


Assuntos
Carcinoma Ductal Pancreático/genética , Estudo de Associação Genômica Ampla/métodos , Neoplasias Pancreáticas/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Humanos , Modelos Estatísticos , Polimorfismo de Nucleotídeo Único
7.
Nat Commun ; 9(1): 556, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422604

RESUMO

In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 × 10-8). Replication of 10 promising signals in up to 2737 patients and 4752 controls from the PANcreatic Disease ReseArch (PANDoRA) consortium yields new genome-wide significant loci: rs13303010 at 1p36.33 (NOC2L, P = 8.36 × 10-14), rs2941471 at 8q21.11 (HNF4G, P = 6.60 × 10-10), rs4795218 at 17q12 (HNF1B, P = 1.32 × 10-8), and rs1517037 at 18q21.32 (GRP, P = 3.28 × 10-8). rs78417682 is not statistically significantly associated with pancreatic cancer in PANDoRA. Expression quantitative trait locus analysis in three independent pancreatic data sets provides molecular support of NOC2L as a pancreatic cancer susceptibility gene.


Assuntos
Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Bases de Dados Genéticas , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Fator 1-beta Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Proteínas Repressoras/genética , Tensinas/genética
8.
Oncotarget ; 7(41): 66328-66343, 2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-27579533

RESUMO

Genome-wide association studies (GWAS) have identified common pancreatic cancer susceptibility variants at 13 chromosomal loci in individuals of European descent. To identify new susceptibility variants, we performed imputation based on 1000 Genomes (1000G) Project data and association analysis using 5,107 case and 8,845 control subjects from 27 cohort and case-control studies that participated in the PanScan I-III GWAS. This analysis, in combination with a two-staged replication in an additional 6,076 case and 7,555 control subjects from the PANcreatic Disease ReseArch (PANDoRA) and Pancreatic Cancer Case-Control (PanC4) Consortia uncovered 3 new pancreatic cancer risk signals marked by single nucleotide polymorphisms (SNPs) rs2816938 at chromosome 1q32.1 (per allele odds ratio (OR) = 1.20, P = 4.88x10 -15), rs10094872 at 8q24.21 (OR = 1.15, P = 3.22x10 -9) and rs35226131 at 5p15.33 (OR = 0.71, P = 1.70x10 -8). These SNPs represent independent risk variants at previously identified pancreatic cancer risk loci on chr1q32.1 ( NR5A2), chr8q24.21 ( MYC) and chr5p15.33 ( CLPTM1L- TERT) as per analyses conditioned on previously reported susceptibility variants. We assessed expression of candidate genes at the three risk loci in histologically normal ( n = 10) and tumor ( n = 8) derived pancreatic tissue samples and observed a marked reduction of NR5A2 expression (chr1q32.1) in the tumors (fold change -7.6, P = 5.7x10 -8). This finding was validated in a second set of paired ( n = 20) histologically normal and tumor derived pancreatic tissue samples (average fold change for three NR5A2 isoforms -31.3 to -95.7, P = 7.5x10 -4-2.0x10 -3). Our study has identified new susceptibility variants independently conferring pancreatic cancer risk that merit functional follow-up to identify target genes and explain the underlying biology.


Assuntos
Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 5/genética , Cromossomos Humanos Par 8/genética , Predisposição Genética para Doença/genética , Neoplasias Pancreáticas/genética , Conjuntos de Dados como Assunto , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único/genética
9.
Cancer Epidemiol Biomarkers Prev ; 25(7): 1185-91, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27197284

RESUMO

Individuals from pancreatic cancer families are at increased risk, not only of pancreatic cancer, but also of melanoma, breast, ovarian, and colon cancers. While some of the increased risk may be due to mutations in high-penetrance genes (i.e., BRCA2, PALB2, ATM, p16/CDKN2A or DNA mismatch repair genes), common genetic variants may also be involved. In a high-risk population of cases with either a family history of pancreatic cancer or early-onset pancreatic cancer (diagnosis before the age of 50 years), we examined the role of genetic variants previously associated with risk of pancreatic, breast, ovarian, or prostate cancer. We genotyped 985 cases (79 early-onset cases, 906 cases with a family history of pancreatic cancer) and 877 controls for 215,389 SNPs using the iSelect Collaborative Oncological Gene-Environment Study (iCOGS) array with custom content. Logistic regression was performed using a log-linear additive model. We replicated several previously reported pancreatic cancer susceptibility loci, including recently identified variants on 2p13.3 and 7p13 (2p13.3, rs1486134: OR = 1.36; 95% CI, 1.13-1.63; P = 9.29 × 10(-4); 7p13, rs17688601: OR = 0.76; 95% CI, 0.63-0.93; P = 6.59 × 10(-3)). For the replicated loci, the magnitude of association observed in these high-risk patients was similar to that observed in studies of unselected patients. In addition to the established pancreatic cancer loci, we also found suggestive evidence of association (P < 5 × 10(-5)) to pancreatic cancer for SNPs at HDAC9 (7p21.1) and COL6A2 (21q22.3). Even in high-risk populations, common variants influence pancreatic cancer susceptibility. Cancer Epidemiol Biomarkers Prev; 25(7); 1185-91. ©2016 AACR.


Assuntos
Carcinoma/genética , Predisposição Genética para Doença , Neoplasias Pancreáticas/genética , Adulto , Carcinoma/epidemiologia , Estudos de Casos e Controles , Reparo de Erro de Pareamento de DNA , Genes BRCA2 , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas Nucleares/genética , Neoplasias Pancreáticas/epidemiologia , Polimorfismo de Nucleotídeo Único , Fatores de Risco
10.
Cancer Discov ; 6(2): 166-75, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26658419

RESUMO

UNLABELLED: Pancreatic cancer is projected to become the second leading cause of cancer-related death in the United States by 2020. A familial aggregation of pancreatic cancer has been established, but the cause of this aggregation in most families is unknown. To determine the genetic basis of susceptibility in these families, we sequenced the germline genomes of 638 patients with familial pancreatic cancer and the tumor exomes of 39 familial pancreatic adenocarcinomas. Our analyses support the role of previously identified familial pancreatic cancer susceptibility genes such as BRCA2, CDKN2A, and ATM, and identify novel candidate genes harboring rare, deleterious germline variants for further characterization. We also show how somatic point mutations that occur during hematopoiesis can affect the interpretation of genome-wide studies of hereditary traits. Our observations have important implications for the etiology of pancreatic cancer and for the identification of susceptibility genes in other common cancer types. SIGNIFICANCE: The genetic basis of disease susceptibility in the majority of patients with familial pancreatic cancer is unknown. We whole genome sequenced 638 patients with familial pancreatic cancer and demonstrate that the genetic underpinning of inherited pancreatic cancer is highly heterogeneous. This has significant implications for the management of patients with familial pancreatic cancer.


Assuntos
Carcinoma/genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Neoplasias Pancreáticas/genética , Análise de Sequência de DNA/métodos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteína BRCA2/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Humanos , Mutação Puntual
11.
Nat Genet ; 47(8): 911-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26098869

RESUMO

Pancreatic cancer is the fourth leading cause of cancer death in the developed world. Both inherited high-penetrance mutations in BRCA2 (ref. 2), ATM, PALB2 (ref. 4), BRCA1 (ref. 5), STK11 (ref. 6), CDKN2A and mismatch-repair genes and low-penetrance loci are associated with increased risk. To identify new risk loci, we performed a genome-wide association study on 9,925 pancreatic cancer cases and 11,569 controls, including 4,164 newly genotyped cases and 3,792 controls in 9 studies from North America, Central Europe and Australia. We identified three newly associated regions: 17q25.1 (LINC00673, rs11655237, odds ratio (OR) = 1.26, 95% confidence interval (CI) = 1.19-1.34, P = 1.42 × 10(-14)), 7p13 (SUGCT, rs17688601, OR = 0.88, 95% CI = 0.84-0.92, P = 1.41 × 10(-8)) and 3q29 (TP63, rs9854771, OR = 0.89, 95% CI = 0.85-0.93, P = 2.35 × 10(-8)). We detected significant association at 2p13.3 (ETAA1, rs1486134, OR = 1.14, 95% CI = 1.09-1.19, P = 3.36 × 10(-9)), a region with previous suggestive evidence in Han Chinese. We replicated previously reported associations at 9q34.2 (ABO), 13q22.1 (KLF5), 5p15.33 (TERT and CLPTM1), 13q12.2 (PDX1), 1q32.1 (NR5A2), 7q32.3 (LINC-PINT), 16q23.1 (BCAR1) and 22q12.1 (ZNRF3). Our study identifies new loci associated with pancreatic cancer risk.


Assuntos
Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 2/genética , Cromossomos Humanos Par 3/genética , Cromossomos Humanos Par 7/genética , Predisposição Genética para Doença/genética , Neoplasias Pancreáticas/genética , Polimorfismo de Nucleotídeo Único , Idoso , Austrália , Europa (Continente) , Feminino , Frequência do Gene , Loci Gênicos/genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , América do Norte , Fatores de Risco
12.
BMC Med Genet ; 13: 46, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22712434

RESUMO

BACKGROUND: Genetic variants are likely to contribute to a portion of prostate cancer risk. Full elucidation of the genetic etiology of prostate cancer is difficult because of incomplete penetrance and genetic and phenotypic heterogeneity. Current evidence suggests that genetic linkage to prostate cancer has been found on several chromosomes including the X; however, identification of causative genes has been elusive. METHODS: Parametric and non-parametric linkage analyses were performed using 26 microsatellite markers in each of 11 groups of multiple-case prostate cancer families from the International Consortium for Prostate Cancer Genetics (ICPCG). Meta-analyses of the resultant family-specific linkage statistics across the entire 1,323 families and in several predefined subsets were then performed. RESULTS: Meta-analyses of linkage statistics resulted in a maximum parametric heterogeneity lod score (HLOD) of 1.28, and an allele-sharing lod score (LOD) of 2.0 in favor of linkage to Xq27-q28 at 138 cM. In subset analyses, families with average age at onset less than 65 years exhibited a maximum HLOD of 1.8 (at 138 cM) versus a maximum regional HLOD of only 0.32 in families with average age at onset of 65 years or older. Surprisingly, the subset of families with only 2-3 affected men and some evidence of male-to-male transmission of prostate cancer gave the strongest evidence of linkage to the region (HLOD = 3.24, 134 cM). For this subset, the HLOD was slightly increased (HLOD = 3.47 at 134 cM) when families used in the original published report of linkage to Xq27-28 were excluded. CONCLUSIONS: Although there was not strong support for linkage to the Xq27-28 region in the complete set of families, the subset of families with earlier age at onset exhibited more evidence of linkage than families with later onset of disease. A subset of families with 2-3 affected individuals and with some evidence of male to male disease transmission showed stronger linkage signals. Our results suggest that the genetic basis for prostate cancer in our families is much more complex than a single susceptibility locus on the X chromosome, and that future explorations of the Xq27-28 region should focus on the subset of families identified here with the strongest evidence of linkage to this region.


Assuntos
Cromossomos Humanos X , Neoplasias da Próstata/genética , Alelos , Ligação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Repetições de Microssatélites
13.
Hum Hered ; 72(3): 161-72, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22004985

RESUMO

BACKGROUND AND METHODS: Association studies using unrelated individuals cannot detect intergenerational genetic effects contributing to disease. To detect these effects, we improve the extended maternal-fetal genotype (EMFG) incompatibility test to estimate any combination of maternal effects, offspring effects, and their interactions at polymorphic loci or multiple SNPs, using any size pedigrees. We explore the advantages of using extended pedigrees rather than nuclear families. We apply our methods to schizophrenia pedigrees to investigate whether the previously associated mother-daughter HLA-B matching is a genuine risk or the result of bias. RESULTS: Simulations demonstrate that using the EMFG test with extended pedigrees increases power and precision, while partitioning extended pedigrees into nuclear families can underestimate intergenerational effects. Application to actual data demonstrates that mother-daughter HLA-B matching remains a schizophrenia risk factor. Furthermore, ascertainment and mate selection biases cannot by themselves explain the observed HLA-B matching and schizophrenia association. CONCLUSIONS: Our results demonstrate the power of the EMFG test to examine intergenerational genetic effects, highlight the importance of pedigree rather than case/control or case-mother/control-mother designs, illustrate that pedigrees provide a means to examine alternative, non-causal mechanisms, and they strongly support the hypothesis that HLA-B matching is causally involved in the etiology of schizophrenia in females.


Assuntos
Predisposição Genética para Doença , Antígenos HLA-B/genética , Hereditariedade/genética , Teste de Histocompatibilidade/métodos , Esquizofrenia/genética , Alelos , Simulação por Computador , Bases de Dados Genéticas , Características da Família , Feminino , Antígenos HLA-B/imunologia , Histocompatibilidade Materno-Fetal/genética , Humanos , Funções Verossimilhança , Masculino , Modelos Genéticos , Linhagem , Fatores de Risco , Esquizofrenia/imunologia
14.
Genet Epidemiol ; 34(5): 512-21, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20552637

RESUMO

Maternal-fetal genotype (MFG) incompatibility is an interaction between the genes of a mother and offspring at a particular locus that adversely affects the developing fetus, thereby increasing susceptibility to disease. Statistical methods for examining MFG incompatibility as a disease risk factor have been developed for nuclear families. Because families collected as part of a study can be large and complex, containing multiple generations and marriage loops, we create the Extended-MFG (EMFG) Test, a model-based likelihood approach, to allow for arbitrary family structures. We modify the MFG test by replacing the nuclear-family based "mating type" approach with Ott's representation of a pedigree likelihood and calculating MFG incompatibility along with the Mendelian transmission probability. In order to allow for extension to arbitrary family structures, we make a slightly more stringent assumption of random mating with respect to the locus of interest. Simulations show that the EMFG test has appropriate type-I error rate, power, and precise parameter estimation when random mating holds. Our simulations and real data example illustrate that the chief advantages of the EMFG test over the earlier nuclear family version of the MFG test are improved accuracy of parameter estimation and power gains in the presence of missing genotypes.


Assuntos
Predisposição Genética para Doença , Modelos Genéticos , Modelos Estatísticos , Núcleo Familiar , Alelos , Simulação por Computador , Saúde da Família , Feminino , Testes Genéticos , Genótipo , Humanos , Funções Verossimilhança , Mães , Linhagem , Gravidez , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA