Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Biol ; 31(10): 965-974, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39364612

RESUMO

D-peptides, the mirror image of canonical L-peptides, offer numerous biological advantages that make them effective therapeutics. This article details how to use DexDesign, the newest OSPREY-based algorithm, for designing these D-peptides de novo. OSPREY physics-based models precisely mimic energy-equivariant reflection operations, enabling the generation of D-peptide scaffolds from L-peptide templates. Due to the scarcity of D-peptide:L-protein structural data, DexDesign calls a geometric hashing algorithm, Method of Accelerated Search for Tertiary Ensemble Representatives, as a subroutine to produce a synthetic structural dataset. DexDesign enables mixed-chirality designs with a new user interface and also reduces the conformation and sequence search space using three new design techniques: Minimum Flexible Set, Inverse Alanine Scanning, and K*-based Mutational Scanning.


Assuntos
Algoritmos , Peptídeos , Peptídeos/química , Software , Conformação Proteica , Modelos Moleculares , Sequência de Aminoácidos
2.
Protein Eng Des Sel ; 372024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38757573

RESUMO

With over 270 unique occurrences in the human genome, peptide-recognizing PDZ domains play a central role in modulating polarization, signaling, and trafficking pathways. Mutations in PDZ domains lead to diseases such as cancer and cystic fibrosis, making PDZ domains attractive targets for therapeutic intervention. D-peptide inhibitors offer unique advantages as therapeutics, including increased metabolic stability and low immunogenicity. Here, we introduce DexDesign, a novel OSPREY-based algorithm for computationally designing de novo D-peptide inhibitors. DexDesign leverages three novel techniques that are broadly applicable to computational protein design: the Minimum Flexible Set, K*-based Mutational Scan, and Inverse Alanine Scan. We apply these techniques and DexDesign to generate novel D-peptide inhibitors of two biomedically important PDZ domain targets: CAL and MAST2. We introduce a framework for analyzing de novo peptides-evaluation along a replication/restitution axis-and apply it to the DexDesign-generated D-peptides. Notably, the peptides we generated are predicted to bind their targets tighter than their targets' endogenous ligands, validating the peptides' potential as lead inhibitors. We also provide an implementation of DexDesign in the free and open source computational protein design software OSPREY.


Assuntos
Algoritmos , Peptídeos , Peptídeos/química , Peptídeos/farmacologia , Humanos , Desenho de Fármacos , Domínios PDZ
3.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38405797

RESUMO

With over 270 unique occurrences in the human genome, peptide-recognizing PDZ domains play a central role in modulating polarization, signaling, and trafficking pathways. Mutations in PDZ domains lead to diseases such as cancer and cystic fibrosis, making PDZ domains attractive targets for therapeutic intervention. D-peptide inhibitors offer unique advantages as therapeutics, including increased metabolic stability and low immunogenicity. Here, we introduce DexDesign, a novel OSPREY-based algorithm for computationally designing de novo D-peptide inhibitors. DexDesign leverages three novel techniques that are broadly applicable to computational protein design: the Minimum Flexible Set, K*-based Mutational Scan, and Inverse Alanine Scan, which enable exponential reductions in the size of the peptide sequence search space. We apply these techniques and DexDesign to generate novel D-peptide inhibitors of two biomedically important PDZ domain targets: CAL and MAST2. We introduce a new framework for analyzing de novo peptides-evaluation along a replication/restitution axis-and apply it to the DexDesign-generated D-peptides. Notably, the peptides we generated are predicted to bind their targets tighter than their targets' endogenous ligands, validating the peptides' potential as lead therapeutic candidates. We provide an implementation of DexDesign in the free and open source computational protein design software OSPREY.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA