Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7493, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980430

RESUMO

Strong circularly polarized excitation opens up the possibility to generate and control effective magnetic fields in solid state systems, e.g., via the optical inverse Faraday effect or the phonon inverse Faraday effect. While these effects rely on material properties that can be tailored only to a limited degree, plasmonic resonances can be fully controlled by choosing proper dimensions and carrier concentrations. Plasmon resonances provide new degrees of freedom that can be used to tune or enhance the light-induced magnetic field in engineered metamaterials. Here we employ graphene disks to demonstrate light-induced transient magnetic fields from a plasmonic circular current with extremely high efficiency. The effective magnetic field at the plasmon resonance frequency of the graphene disks (3.5 THz) is evidenced by a strong ( ~ 1°) ultrafast Faraday rotation ( ~ 20 ps). In accordance with reference measurements and simulations, we estimated the strength of the induced magnetic field to be on the order of 0.7 T under a moderate pump fluence of about 440 nJ cm-2.

2.
Small ; 14(20): e1703808, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29659147

RESUMO

The mechanisms of carrier transport in the cross-plane crystal orientation of transition metal dichalcogenides are examined. The study of in-plane electronic properties of these van der Waals compounds has been the main research focus in recent years. However, the distinctive physical anisotropies, short-channel physics, and tunability of cross layer interactions can make the study of their electronic properties along the out-of-plane crystal orientation valuable. Here, the out-of-plane carrier transport mechanisms in niobium diselenide and hafnium disulfide are explored as two broadly different representative materials. Temperature-dependent current-voltage measurements are preformed to examine the mechanisms involved. First principles simulations and a tunneling model are used to understand these results and quantify the barrier height and hopping distance properties. Using Raman spectroscopy, the thermal response of the chemical bonds is directly explored and the insight into the van der Waals gap properties is acquired. These results indicate that the distinct cross-plane carrier transport characteristics of the two materials are a result of material thermal properties and thermally mediated transport of carriers through the van der Waals gaps. Exploring the cross-plane electron transport, the exciting physics involved is unraveled and potential new avenues for the electronic applications of van der Waals layers are inspired.

3.
2d Mater ; 5(4)2018.
Artigo em Inglês | MEDLINE | ID: mdl-38616955

RESUMO

A promising approach for high speed and high power electronics is to integrate two-dimensional (2D) materials with conventional electronic components such as bulk (3D) semiconductors and metals. In this study we explore a basic integration step of inserting a single monolayer MoS2 (1L-MoS2) inside a Au/p-GaN junction and elucidate how it impacts the structural and electrical properties of the junction. Epitaxial 1L-MoS2 in the form of 1-2 µm triangle domains are grown by powder vaporization on a p-doped GaN substrate, and the Au capping layer is deposited by evaporation. Transmission electron microscopy (TEM) of the van der Waals interface indicates that 1L-MoS2 remained distinct and intact between the Au and GaN and that the Au is epitaxial to GaN only when the 1L-MoS2 is present. Quantitative TEM analyses of the van der Waals interfaces are performed and yielded the atomic plane spacings in the heterojunction. Electrical characterization of the all-epitaxial, vertical Au/1L-MoS2/p-GaN heterojunctions enables the derivations of Schottky barrier heights (SBH) and drawing of the band alignment diagram. Notably, 1L-MoS2 appears to be electronically semi-transparent, and thus can be considered as a modifier to the Au contact rather than an independent semiconductor component forming a pn-junction. The I-V analysis and our first principles calculation indicated Fermi level pinning and substantial band bending in GaN at the interface. Lastly, we illustrate how the depletion regions are formed in a bipolar junction with an ultrathin monolayer component using the calculated distribution of the charge density across the Au/1L-MoS2/GaN junction.

4.
ACS Nano ; 10(11): 10428-10435, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27794601

RESUMO

Nonvolatile charge-trap memory plays an important role in many modern electronics technologies, from portable electronic systems to large-scale data centers. Conventional charge-trap memory devices typically work with fixed channel carrier polarity and device characteristics. However, many emerging applications in reconfigurable electronics and neuromorphic computing require dynamically tunable properties in their electronic device components that can lead to enhanced circuit versatility and system functionalities. Here, we demonstrate an ambipolar black phosphorus (BP) charge-trap memory device with dynamically reconfigurable and polarity-reversible memory behavior. This BP memory device shows versatile memory properties subject to electrostatic bias. Not only the programmed/erased state current ratio can be continuously tuned by the back-gate bias, but also the polarity of the carriers in the BP channel can be reversibly switched between electron- and hole-dominated conductions, resulting in the erased and programmed states exhibiting interchangeable high and low current levels. The BP memory also shows four different memory states and, hence, 2-bit per cell data storage for both n-type and p-type channel conductions, demonstrating the multilevel cell storage capability in a layered material based memory device. The BP memory device with a high mobility and tunable programmed/erased state current ratio and highly reconfigurable device characteristics can offer adaptable memory device properties for many emerging applications in electronics technology, such as neuromorphic computing, data-adaptive energy efficient memory, and dynamically reconfigurable digital circuits.

5.
Nano Lett ; 14(11): 6424-9, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25347787

RESUMO

Few-layer and thin film forms of layered black phosphorus (BP) have recently emerged as a promising material for applications in high performance nanoelectronics and infrared optoelectronics. Layered BP thin films offer a moderate bandgap of around 0.3 eV and high carrier mobility, which lead to transistors with decent on-off ratios and high on-state current densities. Here, we demonstrate the gigahertz frequency operation of BP field-effect transistors for the first time. The BP transistors demonstrated here show respectable current saturation with an on-off ratio that exceeds 2 × 10(3). We achieved a current density in excess of 270 mA/mm and DC transconductance above 180 mS/mm for hole conduction. Using standard high frequency characterization techniques, we measured a short-circuit current-gain cutoff frequency fT of 12 GHz and a maximum oscillation frequency fmax of 20 GHz in 300 nm channel length devices. BP devices may offer advantages over graphene transistors for high frequency electronics in terms of voltage and power gain due to the good current saturation properties arising from their finite bandgap, thus can be considered as a promising candidate for the future high performance thin film electronics technology for operation in the multi-GHz frequency range and beyond.

6.
ACS Nano ; 8(8): 7930-7, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25019978

RESUMO

Semiconducting MoS2 monolayers have shown many promising electrical properties, and the inevitable polycrystallinity in synthetic, large-area films renders understanding the effect of structural defects, such as grain boundaries (GBs, or line-defects in two-dimensional materials), essential. In this work, we first examine the role of GBs in the electrical-transport properties of MoS2 monolayers with varying line-defect densities. We reveal a systematic degradation of electrical characteristics as the line-defect density increases. The two common MoS2 GB types and their specific roles are further examined, and we find that only tilt GBs have a considerable effect on the MoS2 electrical properties. By examining the electronic states and sources of disorder using temperature-dependent transport studies, we adopt the Anderson model for disordered systems to explain the observed transport behaviors in different temperature regimes. Our results elucidate the roles played by GBs in different scenarios and give insights into their underlying scattering mechanisms.

7.
Nano Lett ; 12(9): 4674-80, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22862813

RESUMO

Two-dimensional (2D) materials, such as molybdenum disulfide (MoS(2)), have been shown to exhibit excellent electrical and optical properties. The semiconducting nature of MoS(2) allows it to overcome the shortcomings of zero-bandgap graphene, while still sharing many of graphene's advantages for electronic and optoelectronic applications. Discrete electronic and optoelectronic components, such as field-effect transistors, sensors, and photodetectors made from few-layer MoS(2) show promising performance as potential substitute of Si in conventional electronics and of organic and amorphous Si semiconductors in ubiquitous systems and display applications. An important next step is the fabrication of fully integrated multistage circuits and logic building blocks on MoS(2) to demonstrate its capability for complex digital logic and high-frequency ac applications. This paper demonstrates an inverter, a NAND gate, a static random access memory, and a five-stage ring oscillator based on a direct-coupled transistor logic technology. The circuits comprise between 2 to 12 transistors seamlessly integrated side-by-side on a single sheet of bilayer MoS(2). Both enhancement-mode and depletion-mode transistors were fabricated thanks to the use of gate metals with different work functions.


Assuntos
Dissulfetos/química , Molibdênio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/instrumentação , Transistores Eletrônicos , Desenho de Equipamento , Análise de Falha de Equipamento , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA