Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Small ; 20(7): e2306622, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37806765

RESUMO

Lithium-metal batteries (LMBs) are considered the "holy grail" of the next-generation energy storage systems, and solid-state electrolytes (SSEs) are a kind of critical component assembled in LMBs. However, as one of the most important branches of SSEs, polymer-based electrolytes (PEs) possess several native drawbacks including insufficient ionic conductivity and so on. Click chemistry is a simple, efficient, regioselective, and stereoselective synthesis method, which can be used not only for preparing PEs with outstanding physical and chemical performances, but also for optimizing the stability of solid electrolyte interphase (SEI) layer and elevate the cycling properties of LMBs effectively. Here it is primarily focused on evaluating the merits of click chemistry, summarizing its existing challenges and outlining its increasing role for the designing and fabrication of advanced PEs. The fundamental requirements for reconstructing artificial SEI layer through click chemistry are also summarized, with the aim to offer a thorough comprehension and provide a strategic guidance for exploring the potentials of click chemistry in the field of LMBs.

2.
Microb Biotechnol ; 15(7): 2112-2125, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35298861

RESUMO

Klebsiella pneumoniae is a common strain of bacterial fermentation to produce 1, 3-propanediol (1, 3-PDO). In general, the production of 1, 3-PDO by wild-type K. pneumoniae is relatively low. Therefore, a new gene manipulation of K. pneumoniae was developed to improve the production of 1, 3-PDO by overexpressing in the reduction pathway and attenuating the by-products in the oxidation pathway. Firstly, dhaB and/or dhaT were overexpressed in the reduction pathway. Considering the cost of IPTG, the constitutive promoter P32 was selected to express the key gene. By comparing K.P. pET28a-P32-dhaT with the original strain, the production of 1, 3-PDO was increased by 19.7%, from 12.97 to 15.53 g l-1 (in a 250 ml shaker flask). Secondly, three lldD and budC regulatory sites were selected in the by-product pathway, respectively, using the CRISPR-dCas9 system, and the optimal regulatory sites were selected following the 1, 3-PDO production. As a result, the 1, 3-PDO production by K.P. L1-pRH2521 and K.P. B3-pRH2521 reached up to 19.16 and 18.74 g l-1 , which was increased by 47.7% and 44.5% respectively. Overexpressing dhaT and inhibiting expression of lldD and budC were combined to further enhance the ability of K. pneumoniae to produce 1, 3-PDO. The 1, 3-PDO production by K.P. L1-B3-PRH2521-P32-dhaT reached 57.85 g l-1 in a 7.5 l fermentation tank (with Na+ neutralizer), which is higher than that of the original strain. This is the first time that the 1, 3-PDO production was improved in K. pneumoniae by overexpressing the key gene and attenuating by-product synthesis in the CRISPR-dCas9 system. This study reports an efficient approach to regulate the expression of genes in K. pneumoniae to increase the 1, 3-PDO production, and such a strategy may be useful to modify other strains to produce valuable chemicals.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Klebsiella pneumoniae , Fermentação , Glicerol/metabolismo , Klebsiella pneumoniae/genética , Propilenoglicol/metabolismo , Propilenoglicóis/metabolismo
3.
Food Chem ; 357: 129717, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33964627

RESUMO

In this study, a facile Ag nanocube (NC) array substrate was fabricated for rapid SERS detection of melamine in milk. This easily-prepared substrate exhibited high Raman enhancement factor (~1.02 × 105) and good reproducibility with ~10.75% spot-to-spot variation in Raman intensity. Our proposed method can detect melamine as low as 0.01 ppm in standard solutions and 0.5 ppm in real milk samples after a simple one-step solvent extraction. Two multivariate analysis tools including partial least squares and support vector machines (SVM) were explored to develop reliable regression models for quantitative SERS analysis of melamine. By comparison, SVM regression models exhibited better predictive performance, especially in liquid milk, with root mean square error (RMSE) of calibration = 5.5783, coefficient of determination (R2) of calibration = 0.9807, RMSE of prediction = 1.9636, and R2 of prediction = 0.9736. Hence, this study offers a rapid and sensitive detection of adulterant melamine in milk samples.

4.
Chem Asian J ; 16(3): 237-246, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33146945

RESUMO

Silver nanoparticles (AgNPs) are widely sought after for a variety of biomedical and environmental applications due to their antimicrobial and catalytic properties. We present here a green and simple synthesis of AgNPs utilizing traditional Chinese medicinal herbs. The screening of 20 aqueous herb extracts shows that Sheng Di Huang (Rehmannia glutinosa) had the most promising potential in producing AgNPs of 30±6 nm, with narrow size distribution and high crystallinity. The antimicrobial activities of these AgNPs conducted on E. coli cells were found to be superior in comparison to poly(vinylpyrrolidone)-capped AgNPs synthesized using common chemical method. Additionally, the AgNPs obtained possess excellent catalytic performance in the reduction of 4-nitrophenol to 4-aminophenol. We compared the phytochemical and FTIR spectral analyses of the herb extract before and after synthesis, in order to elucidate the phytochemicals responsible for the reduction of Ag+ ions and the capping of the AgNPs produced.


Assuntos
Anti-Infecciosos/síntese química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Rehmannia/química , Prata/química , Aminofenóis/química , Anti-Infecciosos/química , Catálise , Química Verde , Nitrofenóis/química , Plantas Medicinais/química , Plantas Medicinais/metabolismo , Rehmannia/metabolismo
5.
ACS Appl Mater Interfaces ; 12(33): 37538-37548, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32701289

RESUMO

Flexible and transparent surface-enhanced Raman scattering (SERS) substrates have long been sought-after for nondestructive detection of analytes on nonplanar surfaces, but there is still a lack of one convenient and robust way to fabricate such SERS substrates rapidly. Herein, we demonstrate the fabrication of a high-performance SERS substrate consisting of plasmonic Ag nanocube (Ag NC) arrays anchored onto a flexible transparent poly(dimethylsiloxane) (PDMS) membrane. Through a simple organic/water interfacial self-assembly method, arrays of presynthesized Ag NCs are obtained and directly retrieved onto the PDMS membrane without the aid of rigid substrates (e.g., Si wafers or glass slides). The plasmonic Ag NC arrays can produce strong electromagnetic enhancement, achieving high SERS enhancement factor (∼3.43 × 106) and ideal detection capability for methylene blue (MB) and Rhodamine 6G (R6G) at respective trace amounts of 10-10 and 10-9 M. Moreover, without the need to transfer from substrate to substrate, the regular Ag NC arrays are kept intact, thereby yielding a good reproducibility (RSD ∼12%). We demonstrate further that our as-fabricated SERS substrate displays ideal selectivity toward different kinds of analyte molecules (R6G, crystal violet (CV), and MB) based on principal component analysis. The PDMS membrane owns excellent transparency and flexibility; thus, the substrate enables the conformal contact with nonplanar surfaces and allows the penetration of a laser to reach the analytes from the reverse side of the substrate. This thus facilitates in situ SERS detection of trace residual crystal violet on fish skin, with limit of detection (LOD) reaching 0.6 ppm. This fabrication method reported here is economical and easily implemented. The robust Ag NCs@PDMS could be readily prepared and stored to meet diverse SERS sensing applications, especially for in situ detection of analytes on irregular nonplanar surfaces.

6.
RSC Adv ; 10(3): 1786-1792, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35494687

RESUMO

As the most popular conducting polymer, poly(3,4 ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is widely used for a variety of applications, including thermoelectrics. This paper reports the modulation of the doping level by treatment with hydrazine to improve the Seebeck coefficient of PEDOT:PSS films. PEDOT:PSS films were first treated with formic acid followed by hydrazine, leading to a significant increase in the Seebeck coefficient from 17.5 to 42.7 µV K-1, about 2.5 times higher than that of the pristine film partially at the expense of electrical conductivity. An optimum power factor of 93.5 µW K-2 m-1, being 2.4 times that of the one treated with only formic acid, was achieved. The substantial improvement in the Seebeck coefficient and the power factor is collectively attributed to the removal of the PSS, and more importantly, the reduction of the doping level of PEDOT by the hydrazine treatment, which is evidenced clearly by UV-vis-NIR spectroscopy, XPS and Raman spectroscopy.

7.
Front Chem ; 7: 870, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31970148

RESUMO

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is one of the most popular conducting polymers and widely used as polymer thermoelectric materials, and its thermoelectric performance could be improved by a variety of post-treatment processes. This paper reported two series of post-treatment methods to enhance the thermoelectric performance. The first series method included pre-treatment of PEDOT:PSS film with formamide, followed by imidazolium-based ionic liquids. The second series method included pre-treatment of PEDOT:PSS film with formamide, followed by sodium formaldehyde sulfoxylate, and finally imidazolium-based ionic liquids. Two series of post-treatment methods significantly improved the power factor of PEDOT:PSS when compared to that of PEDOT:PSS treated with formamide only. For example, using the first series post-treatment method with 40 vol.% ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl) amide, the Seebeck coefficient of the PEDOT:PSS film increased from 14.9 to 28.5 µV/K although the electrical conductivity reduced from 2,873 to 1,701 S/cm, resulting in a substantial improvement in the overall power factor from 63.6 to 137.8 µW/K2m. The electrical conductivity enhancement in the formamide-treatment process was in part ascribed to the removal of the insulating PSS component. Further treatment of PEDOT:PSS film with ionic liquid caused dedoping of PEDOT and hence increased in Seebeck coefficient. In contrast, second series post-treatment method led to the reduction in electrical conductivity from 2,873 to 641 S/cm but a big improvement in the Seebeck coefficient from 14.9 to 61.1 µV/K and thus the overall power factor reached up to ~239.2 µW/K2m. Apart from the improvement in electrical conductivity, the increase in Seebeck coefficient is on account of the substantial dedoping of PEDOT polymer to its neutral form and thus leads to the big improvement of its Seebeck coefficient. The environmental stability of ionic liquid-treated PEDOT:PSS films were examined. It was found that the ionic liquid treated PEDOT:PSS retained more than 70% Seebeck coefficient and electrical conductivity at 75% RH humidity and 70°C for 480 h. The improved long-term TE stability is attributed to the strong ionic interaction between sulfonate anions and bulky imidazolium cations that effectively block the penetration of water and lessen the tendency to take up water from the air.

8.
Macromol Rapid Commun ; 35(8): 801-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24677615

RESUMO

Emission of conjugated polymers is known to undergo bathochromic shift from solution to film formation due to π-π stacking in the solid state. In this report, a series of pearl-necklace-like hybrid polymers is designed via the hydrosilylation condensation between bifunctional polyhedral oligomeric silsesquioxanes (B-POSS) and oligofluorene segments. Optoelectronic analyses unequivocally show that the presence of these interconnecting B-POSS can effectively reduce red-shift in photoluminescence and electroluminescence during film formation. These hybrid poly(oligofluorenes) display stable blue emission with high color purity. Thermal analyses also indicate that they are vitrified polymers with high glass transition temperature (up to 125 °C). We believe that this strategy can be extended to other conjugated systems to control color purity in electroactive materials and holds promise as new emissive materials for various applications.


Assuntos
Fluorenos/química , Luminescência , Compostos de Organossilício/química , Polímeros/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Modelos Químicos , Estrutura Molecular , Nanocompostos/química , Polímeros/síntese química , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Biosens Bioelectron ; 39(1): 255-60, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22898661

RESUMO

Cobalt oxyhydroxide, CoOOH, nanosheets were prepared via a surface alkaline treatment of cobalt foil at room temperature without using templates and catalysts. The morphology, chemical composition and structures of the nanosheets were characterized by XRD, FTIR and Raman spectroscopy, FESEM and TEM. These oriented and nanostructured arrays can be used directly as electrodes, thus simplifying the electrode fabrication process, as well as offering advantages such as enhanced electrode-electrolyte contact area, minimum diffusion resistance and direct active material-current collector connection for fast electron transport. The electrode was used as an electrochemical sensor towards non-enzymatic detection of hydrogen peroxide and hydrazine in alkaline solution. The amperometric detection of H(2)O(2) and N(2)H(4) was carried out at low potential (0V and 0.1V). At 0.1V, the amperometric signals are linearly proportional to H(2)O(2) concentration up to 1.6mM (R(2)=0.995), showing a detection limit (S/N=3) of 40µM and a high sensitivity of 99µA mM(-1)cm(-2). For N(2)H(4), the amperometric signals are linearly proportional to concentration up to 1.2mM (R(2)=0.99), showing a detection limit (S/N=3) of 20µM and a high sensitivity of 155µA mM(-1)cm(-2) at 0.1V.


Assuntos
Cobalto/química , Técnicas Eletroquímicas/instrumentação , Hidrazinas/análise , Peróxido de Hidrogênio/análise , Nanoestruturas/química , Óxidos/química , Eletrodos , Nanoestruturas/ultraestrutura , Sensibilidade e Especificidade
11.
Nanomaterials (Basel) ; 2(2): 113-133, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28348299

RESUMO

A simple preparation of metal sulfide nanoparticles via the decomposition of thiobenzoate precursors at room temperature is presented and discussed. Long chain alkylamines were found to mediate the breakdown of metal thiobenzoates, such as those containing Ag, Cu, In and Cd, to produce uniform Ag2S, Cu2-xS, In2S3 and CdS nanoparticles respectively. The long chain amines are assumed to play dual roles as the nucleophilic reagent and the capping agent. It was found that sizes of the nanoparticles can be controlled by changing the type of amine used, as well as the molar ratio between amine and the precursor. We performed DFT calculations on a proposed mechanism involving an initial nucleophilic addition of amine molecule onto the thiocarboxylates. The proposed reaction was also confirmed through the analysis of by-products via infrared spectroscopy. On the basis of this understanding, we propose to manipulate the stability of the precursors by coordination with suitable stabilizing groups, such that the reaction kinetics can be modified to generate different nanostructures of interest.

12.
Org Lett ; 13(22): 6026-9, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22011336

RESUMO

An anthracene unit was successfully fused to the zigzag edge of a boron dipyrromethene (BODIPY) core by an FeCl(3)-mediated oxidative cyclodehydrogenation reaction. Meanwhile, a dimer was also formed by both intramolecular cyclization and intermolecular coupling. The anthracene-fused BODIPY monomer 7a and dimer 7b showed small energy gaps (∼1.4 eV) and near-infrared absorption/emission. Moreover, they exhibited high photostability.


Assuntos
Antracenos/química , Compostos de Boro/síntese química , Corantes Fluorescentes/síntese química , Dimerização , Modelos Moleculares , Estrutura Molecular , Processos Fotoquímicos , Espectroscopia de Luz Próxima ao Infravermelho
13.
Nanotechnology ; 21(29): 295702, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20585170

RESUMO

A technique utilizing the capillary assisted sieving capability of carbon nanotubes (CNTs) to achieve fractionation of nanoparticles of small size distribution is presented. By dipping aligned CNT arrays into a solution comprising different sized quantum dots (QDs), size-selective gradient decoration of QDs onto CNTs is achieved. The fractionating capability of CNTs is also demonstrated for poly-dispersed manganese doped zinc sulfide nanoparticles and QDs of varying sizes and chemical compositions, which we attribute to the size-selective sieving effect of CNTs. By controlling the terminating point for the flow of QDs across the CNT array, a QD size specific CNT/QD hybrid structure is achieved.


Assuntos
Nanopartículas Metálicas/química , Análise em Microsséries/métodos , Nanotubos de Carbono/química , Compostos de Cádmio/química , Compostos de Manganês/química , Tamanho da Partícula , Pontos Quânticos , Compostos de Selênio/química , Sulfetos/química , Compostos de Zinco/química
15.
Opt Express ; 16(10): 6999-7005, 2008 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-18545403

RESUMO

The four-band model, derived under the effective-mass approximation for cubic semiconductor quantum dots (QDs), is compared with experimental measurements on frequency degenerate three-photon absorption (3PA) in CdSe QDs and ZnS QDs. Qualitatively, the model provides the correct prediction on the magnitude of the 3PA cross-sections, which are in the range from 10(-79) to 10(-77) cm(6)s(2)photon(-2) in the light frequency region of interest. More noticeably, the theoretical conclusion of an increasing tendency in the 3PA cross-sections with increasing dot-size is in agreement with the experiment. The discrepancy is also found for smaller QDs (dot-radius is less than one-third of the exciton Bohr radius), which is attributed to neglecting the mixing among the three valence bands in the theory.


Assuntos
Nanotecnologia/métodos , Pontos Quânticos , Absorção , Compostos de Cádmio/química , Cristalização , Luz , Modelos Estatísticos , Nanopartículas , Fotoquímica/métodos , Fótons , Compostos de Selênio/química , Semicondutores , Espectrofotometria/métodos , Sulfetos/química , Temperatura , Compostos de Zinco/química
16.
Chemistry ; 13(2): 632-8, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-16991178

RESUMO

A general and facile approach has been developed to prepare various metal oxide nanocrystals from commercially available metal acetate precursors using an amine-mediated reaction. The influence of temperature and capping agents on the yield and final morphology of the metal oxides nanocrystals was investigated. The approach was applied in the synthesis of shape-controlled ZnO nanocrystals. ZnO nanowires, nanorods, bullets and triangular nanocrystals were successfully prepared by tuning the molar ratio between amine to zinc acetate precursor. On the basis of FTIR and NMR spectroscopic studies, we propose that the amine could mediate the breakdown of the metal acetates through a nucleophilic attack mechanism. The results suggest that amine can play dual role as both the attacking agent and capping agent in this new methodology.

17.
J Phys Chem B ; 110(13): 6649-54, 2006 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-16570968

RESUMO

A simple way to synthesize PbS nanocrystals with the ability to tune their morphology at room temperature is reported. The preparation utilizes an amine-catalyzed decomposition of a precursor and the amine was found to play dual roles as both the catalyst and the capping agent. Spherical PbS nanocrystals of diameters 5 to 10 nm were obtained when long chain alkylamines were used in the pot. When difunctional ethylenediamine was used instead, exclusively PbS dendrites can be isolated from the same precursor at room temperature. Uniform six- and four-armed dendrites are observed, with regular branches of approximately 20 nm in diameter growing in a parallel order. In a further step, morphology tuning of the dendrites to induce 1D growth into nanorods is achievable through the addition of a trace amount of stronger capping dodecanethiol molecules. Thus, PbS nanorods with aspect ratios of approximately 20 to 30 could be successfully obtained and illustrated. A possible formation mechanism is discussed and the initial step of the reaction mechanism was modeled with DFT calculations as a nucleophilic attack.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA