Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
PLoS Med ; 21(4): e1004387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630802

RESUMO

BACKGROUND: Coronavirus Disease 2019 (COVID-19) continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. Here, we present projections of COVID-19 hospitalizations and deaths in the United States for the next 2 years under 2 plausible assumptions about immune escape (20% per year and 50% per year) and 3 possible CDC recommendations for the use of annually reformulated vaccines (no recommendation, vaccination for those aged 65 years and over, vaccination for all eligible age groups based on FDA approval). METHODS AND FINDINGS: The COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023 and April 15, 2025 under 6 scenarios representing the intersection of considered levels of immune escape and vaccination. Annually reformulated vaccines are assumed to be 65% effective against symptomatic infection with strains circulating on June 15 of each year and to become available on September 1. Age- and state-specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. State and national projections from 8 modeling teams were ensembled to produce projections for each scenario and expected reductions in disease outcomes due to vaccination over the projection period. From April 15, 2023 to April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November to January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% projection interval (PI) [1,438,000, 4,270,000]) hospitalizations and 209,000 (90% PI [139,000, 461,000]) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% confidence interval (CI) [104,000, 355,000]) fewer hospitalizations and 33,000 (95% CI [12,000, 54,000]) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000-598,000) fewer hospitalizations and 49,000 (95% CI [29,000, 69,000]) fewer deaths. CONCLUSIONS: COVID-19 is projected to be a significant public health threat over the coming 2 years. Broad vaccination has the potential to substantially reduce the burden of this disease, saving tens of thousands of lives each year.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Hospitalização , SARS-CoV-2 , Vacinação , Humanos , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/epidemiologia , COVID-19/imunologia , Estados Unidos/epidemiologia , Idoso , Hospitalização/estatística & dados numéricos , SARS-CoV-2/imunologia , Pessoa de Meia-Idade , Adulto , Adolescente , Adulto Jovem , Criança , Idoso de 80 Anos ou mais , Masculino
2.
Epidemics ; 47: 100757, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38493708

RESUMO

The Scenario Modeling Hub (SMH) initiative provides projections of potential epidemic scenarios in the United States (US) by using a multi-model approach. Our contribution to the SMH is generated by a multiscale model that combines the global epidemic metapopulation modeling approach (GLEAM) with a local epidemic and mobility model of the US (LEAM-US), first introduced here. The LEAM-US model consists of 3142 subpopulations each representing a single county across the 50 US states and the District of Columbia, enabling us to project state and national trajectories of COVID-19 cases, hospitalizations, and deaths under different epidemic scenarios. The model is age-structured, and multi-strain. It integrates data on vaccine administration, human mobility, and non-pharmaceutical interventions. The model contributed to all 17 rounds of the SMH, and allows for the mechanistic characterization of the spatio-temporal heterogeneities observed during the COVID-19 pandemic. Here we describe the mathematical and computational structure of our model, and present the results concerning the emergence of the SARS-CoV-2 Alpha variant (lineage designation B.1.1.7) as a case study. Our findings show considerable spatial and temporal heterogeneity in the introduction and diffusion of the Alpha variant, both at the level of individual states and combined statistical areas, as it competes against the ancestral lineage. We discuss the key factors driving the time required for the Alpha variant to rise to dominance within a population, and quantify the impact that the emergence of the Alpha variant had on the effective reproduction number at the state level. Overall, we show that our multiscale modeling approach is able to capture the complexity and heterogeneity of the COVID-19 pandemic response in the US.

3.
PLOS Digit Health ; 3(2): e0000430, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38319890

RESUMO

The COVID-19 pandemic offers an unprecedented natural experiment providing insights into the emergence of collective behavioral changes of both exogenous (government mandated) and endogenous (spontaneous reaction to infection risks) origin. Here, we characterize collective physical distancing-mobility reductions, minimization of contacts, shortening of contact duration-in response to the COVID-19 pandemic in the pre-vaccine era by analyzing de-identified, privacy-preserving location data for a panel of over 5.5 million anonymized, opted-in U.S. devices. We define five indicators of users' mobility and proximity to investigate how the emerging collective behavior deviates from typical pre-pandemic patterns during the first nine months of the COVID-19 pandemic. We analyze both the dramatic changes due to the government mandated mitigation policies and the more spontaneous societal adaptation into a new (physically distanced) normal in the fall 2020. Using the indicators here defined we show that: a) during the COVID-19 pandemic, collective physical distancing displayed different phases and was heterogeneous across geographies, b) metropolitan areas displayed stronger reductions in mobility and contacts than rural areas; c) stronger reductions in commuting patterns are observed in geographical areas with a higher share of teleworkable jobs; d) commuting volumes during and after the lockdown period negatively correlate with unemployment rates; and e) increases in contact indicators correlate with future values of new deaths at a lag consistent with epidemiological parameters and surveillance reporting delays. In conclusion, this study demonstrates that the framework and indicators here presented can be used to analyze large-scale social distancing phenomena, paving the way for their use in future pandemics to analyze and monitor the effects of pandemic mitigation plans at the national and international levels.

4.
Epidemics ; 46: 100748, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38394928

RESUMO

Throughout the COVID-19 pandemic, scenario modeling played a crucial role in shaping the decision-making process of public health policies. Unlike forecasts, scenario projections rely on specific assumptions about the future that consider different plausible states-of-the-world that may or may not be realized and that depend on policy interventions, unpredictable changes in the epidemic outlook, etc. As a consequence, long-term scenario projections require different evaluation criteria than the ones used for traditional short-term epidemic forecasts. Here, we propose a novel ensemble procedure for assessing pandemic scenario projections using the results of the Scenario Modeling Hub (SMH) for COVID-19 in the United States (US). By defining a "scenario ensemble" for each model and the ensemble of models, termed "Ensemble2", we provide a synthesis of potential epidemic outcomes, which we use to assess projections' performance, bypassing the identification of the most plausible scenario. We find that overall the Ensemble2 models are well-calibrated and provide better performance than the scenario ensemble of individual models. The ensemble procedure accounts for the full range of plausible outcomes and highlights the importance of scenario design and effective communication. The scenario ensembling approach can be extended to any scenario design strategy, with potential refinements including weighting scenarios and allowing the ensembling process to evolve over time.


Assuntos
COVID-19 , Pandemias , Humanos , Estados Unidos/epidemiologia , Previsões , COVID-19/epidemiologia , Política Pública , Comunicação
5.
Nat Hum Behav ; 8(2): 264-275, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37973827

RESUMO

Despite the global impact of the coronavirus disease 2019 pandemic, the question of whether mandated interventions have similar economic and public health effects as spontaneous behavioural change remains unresolved. Addressing this question, and understanding differential effects across socioeconomic groups, requires building quantitative and fine-grained mechanistic models. Here we introduce a data-driven, granular, agent-based model that simulates epidemic and economic outcomes across industries, occupations and income levels. We validate the model by reproducing key outcomes of the first wave of coronavirus disease 2019 in the New York metropolitan area. The key mechanism coupling the epidemic and economic modules is the reduction in consumption due to fear of infection. In counterfactual experiments, we show that a similar trade-off between epidemic and economic outcomes exists both when individuals change their behaviour due to fear of infection and when non-pharmaceutical interventions are imposed. Low-income workers, who perform in-person occupations in customer-facing industries, face the strongest trade-off.


Assuntos
COVID-19 , Humanos , Pandemias/prevenção & controle , Ocupações , Saúde Pública , New York
6.
medRxiv ; 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37961207

RESUMO

Importance: COVID-19 continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. Objective: To project COVID-19 hospitalizations and deaths from April 2023-April 2025 under two plausible assumptions about immune escape (20% per year and 50% per year) and three possible CDC recommendations for the use of annually reformulated vaccines (no vaccine recommendation, vaccination for those aged 65+, vaccination for all eligible groups). Design: The COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023-April 15, 2025 under six scenarios representing the intersection of considered levels of immune escape and vaccination. State and national projections from eight modeling teams were ensembled to produce projections for each scenario. Setting: The entire United States. Participants: None. Exposure: Annually reformulated vaccines assumed to be 65% effective against strains circulating on June 15 of each year and to become available on September 1. Age and state specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. Main outcomes and measures: Ensemble estimates of weekly and cumulative COVID-19 hospitalizations and deaths. Expected relative and absolute reductions in hospitalizations and deaths due to vaccination over the projection period. Results: From April 15, 2023-April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November-January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% PI: 1,438,000-4,270,000) hospitalizations and 209,000 (90% PI: 139,000-461,000) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% CI: 104,000-355,000) fewer hospitalizations and 33,000 (95% CI: 12,000-54,000) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000-598,000) fewer hospitalizations and 49,000 (95% CI: 29,000-69,000) fewer deaths. Conclusion and Relevance: COVID-19 is projected to be a significant public health threat over the coming two years. Broad vaccination has the potential to substantially reduce the burden of this disease.

7.
Nat Commun ; 14(1): 7260, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985664

RESUMO

Our ability to forecast epidemics far into the future is constrained by the many complexities of disease systems. Realistic longer-term projections may, however, be possible under well-defined scenarios that specify the future state of critical epidemic drivers. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make months ahead projections of SARS-CoV-2 burden, totaling nearly 1.8 million national and state-level projections. Here, we find SMH performance varied widely as a function of both scenario validity and model calibration. We show scenarios remained close to reality for 22 weeks on average before the arrival of unanticipated SARS-CoV-2 variants invalidated key assumptions. An ensemble of participating models that preserved variation between models (using the linear opinion pool method) was consistently more reliable than any single model in periods of valid scenario assumptions, while projection interval coverage was near target levels. SMH projections were used to guide pandemic response, illustrating the value of collaborative hubs for longer-term scenario projections.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias/prevenção & controle , SARS-CoV-2 , Incerteza
8.
Proc Natl Acad Sci U S A ; 120(28): e2300590120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399393

RESUMO

When an influenza pandemic emerges, temporary school closures and antiviral treatment may slow virus spread, reduce the overall disease burden, and provide time for vaccine development, distribution, and administration while keeping a larger portion of the general population infection free. The impact of such measures will depend on the transmissibility and severity of the virus and the timing and extent of their implementation. To provide robust assessments of layered pandemic intervention strategies, the Centers for Disease Control and Prevention (CDC) funded a network of academic groups to build a framework for the development and comparison of multiple pandemic influenza models. Research teams from Columbia University, Imperial College London/Princeton University, Northeastern University, the University of Texas at Austin/Yale University, and the University of Virginia independently modeled three prescribed sets of pandemic influenza scenarios developed collaboratively by the CDC and network members. Results provided by the groups were aggregated into a mean-based ensemble. The ensemble and most component models agreed on the ranking of the most and least effective intervention strategies by impact but not on the magnitude of those impacts. In the scenarios evaluated, vaccination alone, due to the time needed for development, approval, and deployment, would not be expected to substantially reduce the numbers of illnesses, hospitalizations, and deaths that would occur. Only strategies that included early implementation of school closure were found to substantially mitigate early spread and allow time for vaccines to be developed and administered, especially under a highly transmissible pandemic scenario.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Preparações Farmacêuticas , Pandemias/prevenção & controle , Vacinas contra Influenza/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico
9.
medRxiv ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461674

RESUMO

Our ability to forecast epidemics more than a few weeks into the future is constrained by the complexity of disease systems, our limited ability to measure the current state of an epidemic, and uncertainties in how human action will affect transmission. Realistic longer-term projections (spanning more than a few weeks) may, however, be possible under defined scenarios that specify the future state of critical epidemic drivers, with the additional benefit that such scenarios can be used to anticipate the comparative effect of control measures. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make 6-month ahead projections of the number of SARS-CoV-2 cases, hospitalizations and deaths. The SMH released nearly 1.8 million national and state-level projections between February 2021 and November 2022. SMH performance varied widely as a function of both scenario validity and model calibration. Scenario assumptions were periodically invalidated by the arrival of unanticipated SARS-CoV-2 variants, but SMH still provided projections on average 22 weeks before changes in assumptions (such as virus transmissibility) invalidated scenarios and their corresponding projections. During these periods, before emergence of a novel variant, a linear opinion pool ensemble of contributed models was consistently more reliable than any single model, and projection interval coverage was near target levels for the most plausible scenarios (e.g., 79% coverage for 95% projection interval). SMH projections were used operationally to guide planning and policy at different stages of the pandemic, illustrating the value of the hub approach for long-term scenario projections.

10.
Nat Commun ; 14(1): 3272, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37277329

RESUMO

Access to COVID-19 vaccines on the global scale has been drastically hindered by structural socio-economic disparities. Here, we develop a data-driven, age-stratified epidemic model to evaluate the effects of COVID-19 vaccine inequities in twenty lower middle and low income countries (LMIC) selected from all WHO regions. We investigate and quantify the potential effects of higher or earlier doses availability. In doing so, we focus on the crucial initial months of vaccine distribution and administration, exploring counterfactual scenarios where we assume the same per capita daily vaccination rate reported in selected high income countries. We estimate that more than 50% of deaths (min-max range: [54-94%]) that occurred in the analyzed countries could have been averted. We further consider scenarios where LMIC had similarly early access to vaccine doses as high income countries. Even without increasing the number of doses, we estimate an important fraction of deaths (min-max range: [6-50%]) could have been averted. In the absence of the availability of high-income countries, the model suggests that additional non-pharmaceutical interventions inducing a considerable relative decrease of transmissibility (min-max range: [15-70%]) would have been required to offset the lack of vaccines. Overall, our results quantify the negative impacts of vaccine inequities and underscore the need for intensified global efforts devoted to provide faster access to vaccine programs in low and lower-middle-income countries.


Assuntos
COVID-19 , Vacinas , Humanos , Vacinas contra COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinação , Renda
11.
Commun Med (Lond) ; 3(1): 25, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788347

RESUMO

BACKGROUND: For each of the COVID-19 pandemic waves, hospitals have had to plan for deploying surge capacity and resources to manage large but transient increases in COVID-19 admissions. While a lot of effort has gone into predicting regional trends in COVID-19 cases and hospitalizations, there are far fewer successful tools for creating accurate hospital-level forecasts. METHODS: Large-scale, anonymized mobile phone data has been shown to correlate with regional case counts during the first two waves of the pandemic (spring 2020, and fall/winter 2021). Building off this success, we developed a multi-step, recursive forecasting model to predict individual hospital admissions; this model incorporates the following data: (i) hospital-level COVID-19 admissions, (ii) statewide test positivity data, and (iii) aggregate measures of large-scale human mobility, contact patterns, and commuting volume. RESULTS: Incorporating large-scale, aggregate mobility data as exogenous variables in prediction models allows us to make hospital-specific COVID-19 admission forecasts 21 days ahead. We show this through highly accurate predictions of hospital admissions for five hospitals in Massachusetts during the first year of the COVID-19 pandemic. CONCLUSIONS: The high predictive capability of the model was achieved by combining anonymized, aggregated mobile device data about users' contact patterns, commuting volume, and mobility range with COVID hospitalizations and test-positivity data. Mobility-informed forecasting models can increase the lead-time of accurate predictions for individual hospitals, giving managers valuable time to strategize how best to allocate resources to manage forthcoming surges.


During the COVID-19 pandemic, hospitals have needed to make challenging decisions around staffing and preparedness based on estimates of the number of admissions multiple weeks ahead. Forecasting techniques using methods from machine learning have been successfully applied to predict hospital admissions statewide, but the ability to accurately predict individual hospital admissions has proved elusive. Here, we incorporate details of the movement of people obtained from mobile phone data into a model that makes accurate predictions of the number of people who will be hospitalized 21 days ahead. This model will be useful for administrators and healthcare workers to plan staffing and discharge of patients to ensure adequate capacity to deal with forthcoming hospital admissions.

12.
Lancet Reg Health Am ; 17: 100398, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36437905

RESUMO

Background: The COVID-19 Scenario Modeling Hub convened nine modeling teams to project the impact of expanding SARS-CoV-2 vaccination to children aged 5-11 years on COVID-19 burden and resilience against variant strains. Methods: Teams contributed state- and national-level weekly projections of cases, hospitalizations, and deaths in the United States from September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of 1) vaccination (or not) of children aged 5-11 years (starting November 1, 2021), and 2) emergence (or not) of a variant more transmissible than the Delta variant (emerging November 15, 2021). Individual team projections were linearly pooled. The effect of childhood vaccination on overall and age-specific outcomes was estimated using meta-analyses. Findings: Assuming that a new variant would not emerge, all-age COVID-19 outcomes were projected to decrease nationally through mid-March 2022. In this setting, vaccination of children 5-11 years old was associated with reductions in projections for all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios without childhood vaccination. Vaccine benefits increased for scenarios including a hypothesized more transmissible variant, assuming similar vaccine effectiveness. Projected relative reductions in cumulative outcomes were larger for children than for the entire population. State-level variation was observed. Interpretation: Given the scenario assumptions (defined before the emergence of Omicron), expanding vaccination to children 5-11 years old would provide measurable direct benefits, as well as indirect benefits to the all-age U.S. population, including resilience to more transmissible variants. Funding: Various (see acknowledgments).

13.
medRxiv ; 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36415459

RESUMO

Access to COVID-19 vaccines on the global scale has been drastically impacted by structural socio-economic inequities. Here, we develop a data-driven, age-stratified epidemic model to evaluate the effects of COVID-19 vaccine inequities in twenty lower middle and low income countries (LMIC) sampled from all WHO regions. We focus on the first critical months of vaccine distribution and administration, exploring counterfactual scenarios where we assume the same per capita daily vaccination rate reported in selected high income countries. We estimate that, in this high vaccine availability scenario, more than 50% of deaths (min-max range: [56% - 99%]) that occurred in the analyzed countries could have been averted. We further consider a scenario where LMIC had similarly early access to vaccine doses as high income countries; even without increasing the number of doses, we estimate an important fraction of deaths (min-max range: [7% - 73%]) could have been averted. In the absence of equitable allocation, the model suggests that considerable additional non-pharmaceutical interventions would have been required to offset the lack of vaccines (min-max range: [15% - 75%]). Overall, our results quantify the negative impacts of vaccines inequities and call for amplified global efforts to provide better access to vaccine programs in low and lower middle income countries.

14.
Proc Natl Acad Sci U S A ; 119(26): e2112182119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35696558

RESUMO

Detailed characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission across different settings can help design less disruptive interventions. We used real-time, privacy-enhanced mobility data in the New York City, NY and Seattle, WA metropolitan areas to build a detailed agent-based model of SARS-CoV-2 infection to estimate the where, when, and magnitude of transmission events during the pandemic's first wave. We estimate that only 18% of individuals produce most infections (80%), with about 10% of events that can be considered superspreading events (SSEs). Although mass gatherings present an important risk for SSEs, we estimate that the bulk of transmission occurred in smaller events in settings like workplaces, grocery stores, or food venues. The places most important for transmission change during the pandemic and are different across cities, signaling the large underlying behavioral component underneath them. Our modeling complements case studies and epidemiological data and indicates that real-time tracking of transmission events could help evaluate and define targeted mitigation policies.


Assuntos
COVID-19 , Busca de Comunicante , SARS-CoV-2 , COVID-19/transmissão , Humanos , Cidade de Nova Iorque/epidemiologia , Pandemias , Dinâmica Populacional , Fatores de Tempo , Washington/epidemiologia
15.
Elife ; 112022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35726851

RESUMO

In Spring 2021, the highly transmissible SARS-CoV-2 Delta variant began to cause increases in cases, hospitalizations, and deaths in parts of the United States. At the time, with slowed vaccination uptake, this novel variant was expected to increase the risk of pandemic resurgence in the US in summer and fall 2021. As part of the COVID-19 Scenario Modeling Hub, an ensemble of nine mechanistic models produced 6-month scenario projections for July-December 2021 for the United States. These projections estimated substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant, projected to occur across most of the US, coinciding with school and business reopening. The scenarios revealed that reaching higher vaccine coverage in July-December 2021 reduced the size and duration of the projected resurgence substantially, with the expected impacts was largely concentrated in a subset of states with lower vaccination coverage. Despite accurate projection of COVID-19 surges occurring and timing, the magnitude was substantially underestimated 2021 by the models compared with the of the reported cases, hospitalizations, and deaths occurring during July-December, highlighting the continued challenges to predict the evolving COVID-19 pandemic. Vaccination uptake remains critical to limiting transmission and disease, particularly in states with lower vaccination coverage. Higher vaccination goals at the onset of the surge of the new variant were estimated to avert over 1.5 million cases and 21,000 deaths, although may have had even greater impacts, considering the underestimated resurgence magnitude from the model.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Pandemias/prevenção & controle , SARS-CoV-2/genética , Estados Unidos/epidemiologia , Vacinação
16.
PLoS Comput Biol ; 18(5): e1010146, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35613248

RESUMO

We analyze the effectiveness of the first six months of vaccination campaign against SARS-CoV-2 in Italy by using a computational epidemic model which takes into account demographic, mobility, vaccines data, as well as estimates of the introduction and spreading of the more transmissible Alpha variant. We consider six sub-national regions and study the effect of vaccines in terms of number of averted deaths, infections, and reduction in the Infection Fatality Rate (IFR) with respect to counterfactual scenarios with the actual non-pharmaceuticals interventions but no vaccine administration. Furthermore, we compare the effectiveness in counterfactual scenarios with different vaccines allocation strategies and vaccination rates. Our results show that, as of 2021/07/05, vaccines averted 29, 350 (IQR: [16, 454-42, 826]) deaths and 4, 256, 332 (IQR: [1, 675, 564-6, 980, 070]) infections and a new pandemic wave in the country. During the same period, they achieved a -22.2% (IQR: [-31.4%; -13.9%]) IFR reduction. We show that a campaign that would have strictly prioritized age groups at higher risk of dying from COVID-19, besides frontline workers and the fragile population, would have implied additional benefits both in terms of avoided fatalities and reduction in the IFR. Strategies targeting the most active age groups would have prevented a higher number of infections but would have been associated with more deaths. Finally, we study the effects of different vaccination intake scenarios by rescaling the number of available doses in the time period under study to those administered in other countries of reference. The modeling framework can be applied to other countries to provide a mechanistic characterization of vaccination campaigns worldwide.


Assuntos
COVID-19 , Vacinas , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Programas de Imunização , Itália/epidemiologia , SARS-CoV-2 , Vacinação
17.
medRxiv ; 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35313593

RESUMO

Background: SARS-CoV-2 vaccination of persons aged 12 years and older has reduced disease burden in the United States. The COVID-19 Scenario Modeling Hub convened multiple modeling teams in September 2021 to project the impact of expanding vaccine administration to children 5-11 years old on anticipated COVID-19 burden and resilience against variant strains. Methods: Nine modeling teams contributed state- and national-level projections for weekly counts of cases, hospitalizations, and deaths in the United States for the period September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of: 1) presence vs. absence of vaccination of children ages 5-11 years starting on November 1, 2021; and 2) continued dominance of the Delta variant vs. emergence of a hypothetical more transmissible variant on November 15, 2021. Individual team projections were combined using linear pooling. The effect of childhood vaccination on overall and age-specific outcomes was estimated by meta-analysis approaches. Findings: Absent a new variant, COVID-19 cases, hospitalizations, and deaths among all ages were projected to decrease nationally through mid-March 2022. Under a set of specific assumptions, models projected that vaccination of children 5-11 years old was associated with reductions in all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios where children were not vaccinated. This projected effect of vaccinating children 5-11 years old increased in the presence of a more transmissible variant, assuming no change in vaccine effectiveness by variant. Larger relative reductions in cumulative cases, hospitalizations, and deaths were observed for children than for the entire U.S. population. Substantial state-level variation was projected in epidemic trajectories, vaccine benefits, and variant impacts. Conclusions: Results from this multi-model aggregation study suggest that, under a specific set of scenario assumptions, expanding vaccination to children 5-11 years old would provide measurable direct benefits to this age group and indirect benefits to the all-age U.S. population, including resilience to more transmissible variants.

18.
Nat Med ; 28(5): 934-938, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35210596

RESUMO

Given global Coronavirus Disease 2019 (COVID-19) vaccine shortages and inequity of vaccine distributions, fractionation of vaccine doses might be an effective strategy for reducing public health and economic burden, notwithstanding the emergence of new variants of concern. In this study, we developed a multi-scale model incorporating population-level transmission and individual-level vaccination to estimate the costs of hospitalization and vaccination and the economic benefits of reducing COVID-19 deaths due to dose-fractionation strategies in India. We used large-scale survey data of the willingness to pay together with data of vaccine and hospital admission costs to build the model. We found that fractional doses of vaccines could be an economically viable vaccination strategy compared to alternatives of either full-dose vaccination or no vaccination. Dose-sparing strategies could save a large number of lives, even with the emergence of new variants with higher transmissibility.


Assuntos
COVID-19 , Vacinas , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Análise Custo-Benefício , Humanos , SARS-CoV-2 , Vacinação
19.
Lancet Reg Health Am ; 8: 100182, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35072146

RESUMO

BACKGROUND: As SARS-CoV-2 vaccines are administered worldwide, the COVID-19 pandemic continues to exact significant human and economic costs. Mass testing of unvaccinated individuals followed by isolation of positive cases can substantially mitigate risks and be tailored to local epidemiological conditions to ensure cost effectiveness. METHODS: Using a multi-scale model that incorporates population-level SARS-CoV-2 transmission and individual-level viral load kinetics, we identify the optimal frequency of proactive SARS-CoV-2 testing, depending on the local transmission rate and proportion immunized. FINDINGS: Assuming a willingness-to-pay of US$100,000 per averted year of life lost (YLL) and a price of $10 per test, the optimal strategy under a rapid transmission scenario (Re ∼ 2.5) is daily testing until one third of the population is immunized and then weekly testing until half the population is immunized, combined with a 10-day isolation period of positive cases and their households. Under a low transmission scenario (Re ∼ 1.2), the optimal sequence is weekly testing until the population reaches 10% partial immunity, followed by monthly testing until 20% partial immunity, and no testing thereafter. INTERPRETATION: Mass proactive testing and case isolation is a cost effective strategy for mitigating the COVID-19 pandemic in the initial stages of the global SARS-CoV-2 vaccination campaign and in response to resurgences of vaccine-evasive variants. FUNDING: US National Institutes of Health, US Centers for Disease Control and Prevention, HK Innovation and Technology Commission, China National Natural Science Foundation, European Research Council, and EPSRC Impact Acceleration Grant.

20.
PLOS Digit Health ; 1(6): e0000065, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36812533

RESUMO

With a dataset of testing and case counts from over 1,400 institutions of higher education (IHEs) in the United States, we analyze the number of infections and deaths from SARS-CoV-2 in the counties surrounding these IHEs during the Fall 2020 semester (August to December, 2020). We find that counties with IHEs that remained primarily online experienced fewer cases and deaths during the Fall 2020 semester; whereas before and after the semester, these two groups had almost identical COVID-19 incidence. Additionally, we see fewer cases and deaths in counties with IHEs that reported conducting any on-campus testing compared to those that reported none. To perform these two comparisons, we used a matching procedure designed to create well-balanced groups of counties that are aligned as much as possible along age, race, income, population, and urban/rural categories-demographic variables that have been shown to be correlated with COVID-19 outcomes. We conclude with a case study of IHEs in Massachusetts-a state with especially high detail in our dataset-which further highlights the importance of IHE-affiliated testing for the broader community. The results in this work suggest that campus testing can itself be thought of as a mitigation policy and that allocating additional resources to IHEs to support efforts to regularly test students and staff would be beneficial to mitigating the spread of COVID-19 in a pre-vaccine environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA