Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Sci Rep ; 14(1): 6716, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509345

RESUMO

Cement is the most widely used construction material due to its strength and affordability, but its production is energy intensive. Thus, the need to replace cement with widely available waste material such as incinerated black filter cake (IBFC) in order to reduce energy consumption and the associated CO2 emissions. However, because IBFC is a newly discovered cement replacement material, several parameters affecting the mechanical properties of IBFC-cement composite have not been thoroughly investigated yet. Thus, this work aims to investigate the impact of IBFC as a cement replacement and the addition of the calcifying bacterium Lysinibacillus sp. WH on the mechanical and self-healing properties of IBFC cement pastes. The properties of the IBFC-cement pastes were assessed by determining compressive strength, permeable void, water absorption, cement hydration product, and self-healing property. Increases in IBFC replacement reduced the durability of the cement pastes. The addition of the strain WH to IBFC cement pastes, resulting in biocement, increased the strength of the IBFC-cement composite. A 20% IBFC cement-replacement was determined to be the ideal ratio for producing biocement in this study, with a lower void percentage and water absorption value. Adding strain WH decreases pore sizes, densifies the matrix in ≤ 20% IBFC biocement, and enhances the formation of calcium silicate hydrate (C-S-H) and AFm ettringite phases. Biogenic CaCO3 and C-S-H significantly increase IBFC composite strength, especially at ≤ 20% IBFC replacement. Moreover, IBFC-cement composites with strain WH exhibit self-healing properties, with bacteria precipitating CaCO3 crystals to bridge cracks within two weeks. Overall, this work provides an approach to produce a "green/sustainable" cement using biologically enabled self-healing characteristics.


Assuntos
Saccharum , Silicatos , Compostos de Cálcio , Cimentos Ósseos , Bactérias , Água
2.
Injury ; 55(3): 111316, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215570

RESUMO

This study aims to compare the mechanical strength of three different posterior-based internal fixation methods for posteromedial tibial plateau fractures. The study utilized 12 tibial plateaus harvested from fresh-frozen cadavers, and the posteromedial fracture fragments were created. The bones were then randomly assigned to one of three fixation methods: two posteroanterior lag screws (LS) size 4.0 mm, posterior buttress plate using a 3.5 mm small dynamic compression plate (DCP), or posterior buttress plate using a 3.5 mm T-shaped plate (TP). Biomechanical testing was performed by applying vertical compression force to the center of the posteromedial fracture fragment until the load to failure (displacement ≥ 3 mm) was reached, and displacement of the fragment was measured using a motion sensor. The data exhibited normal distribution, and one-way analysis of variance (ANOVA) was used to determine the load to failure, followed by Fisher post hoc Least-Significant Difference (LSD) to correct for multiple comparisons. The statistical analysis demonstrated significantly higher mean load to failure values in the T-shaped plate group compared to both the small dynamic compression plate group and the lag screw group (p < 0.05). However, after conducting further post hoc analysis, the observed significant differences were solely between the LS and TP groups (p = 0.021). These findings suggest that the T-shaped plate represents the most effective method for internally fixing posteromedial tibial plateau fractures.


Assuntos
Fraturas da Tíbia , Fraturas do Planalto Tibial , Humanos , Fenômenos Biomecânicos , Parafusos Ósseos , Fraturas da Tíbia/cirurgia , Fixação Interna de Fraturas/métodos , Placas Ósseas , Cadáver
3.
Int J Biol Macromol ; 253(Pt 7): 127401, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37827400

RESUMO

In this study, a smart strain sensor based on gluten/guar gum (GG) copolymer containing a combination of additives was developed. The mix proportions of strain sensors were designed using Taguchi method coupled with Grey relational analysis. L16 orthogonal array with three factors, viz. tannic acid (TA), glycerol and sodium chloride (NaCl) at four-levels each was optimized. The addition of TA substantially enhanced tensile strength, self-adhesion ability and conductivity. The self-adhesion ability could also be improved by adding NaCl in range of 0-5 wt%. The presence of glycerol in strain sensors could reduce the self-healing time which was found in the range of 28.75-150 s. In addition, the incorporation of glycerol into gel also improved stretchability of strain sensors. The best mix proportion of strain sensor was found to be 3.75 wt% TA, 30 vol% glycerol and 5 wt% NaCl. The best mixture of stain sensor showed the highest gauge factor (GF) of 0.61 % at a stretchability of 665 % and rapid self-healing at 70 s. This strain sensor could be applied to monitor human limb movements in a wide temperature range from -20 °C to 50 °C. Furthermore, the obtained gel was successfully used as electronic devices and self-powered sensors.


Assuntos
Glicerol , Prunella , Humanos , Cimentos de Resina , Cloreto de Sódio , Condutividade Elétrica , Eletrônica , Glutens , Taninos , Hidrogéis
4.
Sci Rep ; 13(1): 16351, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770580

RESUMO

A geopolymer is a low-carbon cement based on the utilization of waste ash in alkali-activated conditions. Coal fly ash is widely used as a source material for geopolymer synthesis since it contains a sufficient amount of reactive alumina and silica for geopolymerization. Geopolymer products are known to have beneficial fire resistance and mechanical properties. Class F or low-calcium fly ash (LCFA) is generally used as a primary aluminosilicate source; however, heat curing is required to complete the reaction and hardening process and achieve a strong composite. Furthermore, calcium additives are often required to improve the strength of LCFA geopolymers. This paper presents the potential of reusing calcium waste for this purpose. Three calcium wastes, namely calcium carbide residue (CCR), limestone waste, and waste cement (WC) slurry in powder form were used as additives and compared with the use of ordinary Portland cement (OPC). LCFA was replaced with the calcium additives at 20%. However, 20% CCR resulted in flash setting, hence 5% CCR was used instead. A durability test using 3% HCl solution was also performed. The results showed that the reactivity of calcium additives played an important role in strength development. In the calcium-aluminosilicate-alkali system, calcium silicate hydrate (CSH) and calcium aluminosilicate hydrate (CASH) were formed. The maximum strength of 21.9 MPa was obtained from the OPC/LCFA geopolymer, and 3% HCl solution had a deleterious effect on the strength. OPC and CCR were favorable reactive sources of calcium compounds to blend with LCFA. From the thermogravimetric results, lower thermal weight changes with higher strength gains were achieved. Low CaCO3 decomposition at 750 °C according to the TGA curves indicated the more formation of thermally stable CSH and high compressive strength of Ca/LCFA geopolymers.

5.
J Environ Manage ; 345: 118783, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37598494

RESUMO

Calcium carbide residue (CCR) is a waste obtained from the production of acetylene gas by the hydration reaction of calcium carbide. This residue is generated in large quantities annually and requires appropriate disposal. The main composition of the residue is calcium hydroxide (Ca(OH)2). Ca(OH)2 can react with CO2 gas and form CaCO3 particles. This process is well known but not very attractive since Ca(OH)2 is obtained from limestone using an energy-intensive thermal conversion process. This paper examined the synthesis of CaCO3 from CCR solutions by capturing CO2 with the aid of triethanolamine (TEA) solutions at doses of 0, 5, 10 and 20% w/w. The precipitated CaCO3 was characterized, and the application of CaCO3 as a filler in epoxy resin was tested. The results showed that the precipitated CaCO3 was mainly calcite, with a 76.6% yield. Cubic calcite was primarily obtained in TEA solutions, whereas small and agglomerated spherical vaterite and cubic calcite particles were formed in non-TEA solutions. The CaCO3-filled epoxy composites showed higher compressive strength than the neat resin. However, the transparency of specimen plates was reduced. These results can serve as guidelines for the application of CCR slurry filtrate obtained from the sedimentation ponds of acetylene plants and help to reduce the amount of wastewater that needs to be treated. CO2 gas from industrial flue gas combined with TEA solution could be applied to precipitate CaCO3 for carbon-neutral manufacturing.


Assuntos
Carbonato de Cálcio , Dióxido de Carbono , Carbonato de Cálcio/química , Dióxido de Carbono/química , Resinas Epóxi , Acetileno
6.
Int J Biol Macromol ; 242(Pt 3): 125118, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37263326

RESUMO

Bacterial wound infections remain a significant health issue of great concern. Hence, there is a need to develop a novel material with antibacterial properties and smart functions. In this study, the effects of silver nanoparticles content (AgNPs) on properties of photothermal and pH-responsive nanocomposite hydrogels were investigated. The nanocomposite hydrogel samples were prepared using cassava starch waste modified by carboxymethylation (CMS), and mixed with poly vinly alcohol (PVA) and tannic acid (TA). The presence of AgNPs in the hydrogel samples enhanced antibacterial activities and photothermal conversion ability. The use of as-prepared hydrogel using 200 mM silver nitrate (H-AgNPs-200) combined with near infrared (NIR) radiation produced 100 % antibacterial efficiency for Escherichia coli (E.coli) and 98.2 % for Staphylococcus aureus (S.aureus). Furthermore, the H-AgNPs-200 also provided the highest storage modulus at 8.78 kPa. The obtained nanocomposite hydrogel was shown to exhibit pH-responsive release of TA. Under NIR radiation, higher release of TA at different pH was observed. The cytotoxicity study indicated that the nanocomposite hydrogels had good biocompatibility. Hence, the development of nanocomposite hydrogel-based CMS from cassava starch waste/PVA/AgNPs is a promising and sustainable approach where agro-waste product is used as the base material for medical application in wound dressing.


Assuntos
Nanopartículas Metálicas , Nanogéis , Nanopartículas Metálicas/química , Prata , Antibacterianos/farmacologia , Antibacterianos/química , Amido , Esterilização , Hidrogéis/química , Concentração de Íons de Hidrogênio
7.
Sci Rep ; 13(1): 44, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36593234

RESUMO

Building materials with hydrophobic surfaces can exhibit increased service life by preventing moisture absorption or diffusion through their surfaces. For concrete used in construction, this hydrophobicity can prevent the corrosion of reinforcing steel bars. Geopolymers are a new cement-free binding material that have been extensively studied to replace Portland cement. However, similar to normal concrete, geopolymers are susceptible to the intake of moisture. This paper presents the fabrication of a superhydrophobic and self-cleaning surface on a fly ash geopolymer as a method to prevent moisture intake. A composite coating of polydimethylsiloxane (PDMS) solution containing dispersed polytetrafluoroethylene (PTFE) or calcium stearate (CS) microparticles was applied by dip-coating to form the hydrophobic surface. Additionally, fly ash was incorporated with the PTFE and CS microparticles to increase surface roughness and reduce material cost. The experimental results showed that the coating containing CS microparticles yielded a hydrophobic surface with a contact angle of 140°, while those containing PTFE microparticles provided a superhydrophobic surface with a contact angle of 159°. The incorporation of fly ash resulted in increased surface roughness, leading to a larger contact angle and a smaller sliding angle. A contact angle of 153° with a sliding angle of 8.7° was observed on the PTFE/fly ash-coated surface. The cleaning process was demonstrated with a test whereby dust was removed by water droplets rolling off the surface. The tested coating exhibited self-cleaning and waterproofing properties and could thus improve the sustainability of materials in building construction.


Assuntos
Cinza de Carvão , Politetrafluoretileno , Cinza de Carvão/química , Interações Hidrofóbicas e Hidrofílicas
8.
Int J Biol Macromol ; 225: 899-910, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403762

RESUMO

Silver nanoparticles (AgNPs)/carboxylated cellulose nanocrystals (Ag-cCNC) from Eucalyptus pulp were prepared using a three-step process. The cCNC were synthesized by oxidation of CNC from Eucalyptus pulp with ammonium persulfate, followed by a hydrothermal reaction to form Ag-cCNC. The Ag-cCNC was then characterized with respect to Ag+ release, flow behavior, and anticancer activity for potential applications in biomedicine and drug delivery. AgNPs with particle sizes in the range of 16.25 ± 7.83 to 21.84 ± 7.21 nm were uniformly embedded on the surface of the cCNC. The Ag-cCNC exhibited a slow and controllable release of Ag+ at a rate of 0.02 % per day for 28 days. Ag+ release was best described by the Korsmeyer-Peppas model based on non-Fickian diffusion. The Ag-cCNC at 200 µg/mL exerted antiproliferative activity in MCF-7 human breast cancer cells with 1.01 % ± 0.35 % cell viability and was non-toxic against normal Vero cells with 90 % viability. In contrast, the chemotherapeutic drug melphalan exhibited cytotoxic effects against both MCF-7 and Vero cells. The Ag-cCNC samples showed shear thinning properties with a pseudoplastic fluid behavior, indicating that Ag-cCNCs are suitable for drug delivery by injection.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Animais , Chlorocebus aethiops , Humanos , Nanopartículas Metálicas/química , Prata/farmacologia , Prata/química , Células Vero , Celulose/química , Antineoplásicos/farmacologia
9.
RSC Adv ; 12(47): 30539-30548, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36337966

RESUMO

The presence of magnesium (Mg) and calcium (Ca) in biochar-based fertilizers is linked to the slow release of phosphorus (P), but these alkali metals have not been systematically compared under identical conditions. In this study, sugarcane filter cake was treated with H3PO4 and MgO or CaO followed by pyrolysis at 600 °C to produce a Mg/P-rich biochar (MgPA-BC) and a Ca/P-rich biochar (CaPA-BC), respectively. The P-loaded biochars were studied by extraction and kinetic release in water over 240 hours to assess the potential P availability. X-ray diffraction and Fourier-transform infrared (FTIR) spectroscopy were used to characterize the pristine and post-kinetics biochars to identify the responsible phases for phosphate release. Additionally, the dissolved P concentrations in the kinetic release experiment were compared to thermodynamic solubility calculations of common Mg and Ca phosphates. Both MgPA-BC and CaPA-BC had P loadings of 73-74 g kg-1 but showed distinctly different release behaviors. Phosphate dissolution from MgPA-BC was gradual and reached 10 g P per kg biochar after 240 hours, with rate-determining phases being Mg2P2O7 (Mg pyrophosphate), MgNH4PO4·6H2O (struvite), and Mg3(PO4)2·22H2O (cattiite). In contrast, CaPA-BC only released 1.2 g P per kg biochar. Phosphate release from CaPA-BC was limited by the low solubility of Ca2P2O7 (Ca pyrophosphate) and (Ca,Mg)3(PO4)2 (whitlockite). Co-pyrolysis with MgO retained P in a more soluble and available form than CaO, making MgO a preferential additive over CaO to immobilize phytoavailable P in biochar-based fertilizers with higher fertilizer effectiveness.

10.
Heliyon ; 8(11): e11266, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36339768

RESUMO

Objective: This study aimed to assess the diagnostic accuracy and sensitivity of a YOLOv4-tiny AI model for detecting and classifying hip fractures types. Materials and methods: In this retrospective study, a dataset of 1000 hip and pelvic radiographs was divided into a training set consisting of 450 fracture and 450 normal images (900 images total) and a testing set consisting of 50 fracture and 50 normal images (100 images total). The training set images were each manually augmented with a bounding box drawn around each hip, and each bounding box was manually labeled either (1) normal, (2) femoral neck fracture, (3) intertrochanteric fracture, or (4) subtrochanteric fracture. Next, a deep convolutional neural network YOLOv4-tiny AI model was trained using the augmented training set images, and then model performance was evaluated with the testing set images. Human doctors then evaluated the same testing set images, and the performances of the model and doctors were compared. The testing set contained no crossover data. Results: The resulting output images revealed that the AI model produced bounding boxes around each hip region and classified the fracture and normal hip regions with a sensitivity of 96.2%, specificity of 94.6%, and an accuracy of 95%. The human doctors performed with a sensitivity ranging from 69.2 to 96.2%. Compared with human doctors, the detection rate sensitivity of the model was significantly better than a general practitioner and first-year residents and equivalent to specialist doctors. Conclusions: This model showed hip fracture detection sensitivity comparable to well-trained radiologists and orthopedists and classified hip fractures highly accurately.

11.
Sci Rep ; 12(1): 9530, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681065

RESUMO

Geopolymer (GP) was invented to replace concrete, but its heat curing requirement hinders extensive use in real-world construction. Past studies have tested several methods of heat curing. However, the conventional heat curing process (using an oven) is still required for GP to develop good strength on the laboratory scale. This study introduces a new heat curing method for GP based on an electromagnetic field (EMF)generator and a ferromagnetic material. Waste iron powder (WIP) was used as the ferromagnetic material mixed with the fly ash-based GP to generate heat through induction. The sample was cured at 1.18 kW with 150-200 kHz of EMF generator for 15 min. The results showed that 5% of the WIP mixed sample gained compressive and flexural strength at 28 days more than the control (oven-cured). Compressive and flexural strengths of 76.8 MPa and 11.3 MPa were obtained, respectively. In addition, heat induction enhanced the densification and geopolymerization in the GP matrix following SEM and XRD results. This alternative method of heat curing accelerated the formation of the GP matrix, reduced curing time, and increased strength. Moreover, this EMF curing method can save 99.70% of the energy consumed compared to the conventional heat curing method.

12.
Cellulose (Lond) ; 29(10): 5853-5868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669847

RESUMO

To avoid bacterial and viral infections on food products, the use of antibacterial and antiviral packaging offers great benefit to the food industry. In this study, the coating of paper packaging with silver-decorated magnetic particles (Ag@Fe3O4) was developed. The Ag@Fe3O4 was prepared by a facile and environmentally friendly method using extracted spent coffee grounds (ex-SCG). The effects of Ag@Fe3O4 content on properties of coated paper were investigated. The overall properties of coated paper improved when the Ag@Fe3O4 content increased up to 0.15%w/v. An increase in tensile strength of 154.01% and a decrease in water vapor permeability of 48.50% were found in coated paper with 0.15%w/v Ag@Fe3O4. Furthermore, the coated paper also exhibited the synergistic effect on antibacterial activities against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The release of metal ions in food simulants and kinetic release parameters were also studied. The release of silver ions and ferrous ions in food simulants met the requirement of overall migration limit of the European Standard. The paper coated with 0.15%w/v Ag@Fe3O4 had better capabilities to maintain quality and extend shelf-life of tomatoes. The obtained Ag@Fe3O4 coated paper is promising for bioactive food packaging to retain food freshness. Supplementary Information: The online version contains supplementary material available at 10.1007/s10570-022-04636-0.

13.
Nanomaterials (Basel) ; 12(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35335757

RESUMO

In this study, the influence of graphene oxide nanoparticles on the bond-slip behavior of fiber and fly-ash-based geopolymer paste was examined. Geopolymer paste incorporating a graphene oxide nanoparticle solution was cast in half briquetted specimens and embedded with a fiber. Three types of fiber were used: steel, polypropylene, and basalt. The pullout test was performed at two distinct speeds: 1 mm/s and 3 mm/s. The results showed that the addition of graphene oxide increased the compressive strength of the geopolymer by about 7%. The bond-slip responses of fibers embedded in the geopolymer mixed with graphene oxide exhibited higher peak stress and toughness compared to those embedded in a normal geopolymer. Each fiber type also showed a different mode of failure. Both steel and polypropylene fibers showed full bond-slip responses due to their high ductility. Basalt fiber, on the other hand, because of its brittleness, failed by fiber fracture mode and showed no slip in pullout responses. Both bond strength and toughness were found to be rate-sensitive. The sensitivity was higher in the graphene oxide/geopolymer than in the conventional geopolymer.

14.
Polymers (Basel) ; 14(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35054726

RESUMO

Cetyl trimethyl ammonium bromide (CTAB)-modified natural rubber latex/Portland cement paste (CTAB + NL/PC) composites were fabricated by varying the NL/cement and CTAB/cement ratios to improve the elastic property of PC. The stability and workability of the CTAB-modified NL particles in the PC matrix were significantly improved. The microstructure and dielectric property analyses of PC, CTAB/PC, NL/PC, and (CTAB + NL)/PC composites were performed to describe the interaction mechanism between the CTAB-modified NL and PC. The portlandite phase in PC was reduced by incorporating CTAB + NL. Although the tensile strength of NL/PC was significantly increased, its compressive strength also greatly decreased by ~40.3%. The tensile and compressive strengths of CTAB/PC were not significantly improved. Notably, the tensile strength of (CTAB + NL)/PC was significantly increased compared to those of PC, CTAB/PC, and NL/PC, while the depreciated compressive strength was only 18.7%. The optimized compressive-tensile performance of (CTAB + NL)/PC was equal to that of PC. The dielectric constants of NL/PC, CTAB/PC, and (CTAB + NL)/PC were reduced due to the low dielectric constant of NL and the ability of CTAB to capture negative charges in the PC matrix, leading to a reduction in the negative surface charges and hence the interfacial polarization. This result was confirmed by the decreased loss tangent in a low-frequency range, which is usually reduced by decreasing the free charges. This work provides a comprehensive guideline for significantly improving the elastic property of PC while retaining a high compressive strength.

15.
J Environ Manage ; 302(Pt A): 114036, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34735831

RESUMO

Raw water is a significant resource for industrial water usage, but this water is not directly suitable for use due to the presence of contaminants. Therefore, pre-treatment is essential. The treatment generates water treatment residue (WTR) which consists of silt, clay and undesirable components. Most WTR is conventionally disposed of in landfill. In addition, the presence of iron (Fe) and manganese (Mn) in groundwater can result in a reddish-brown color and undesirable taste and odour. A number of expensive and complex technologies are being used for the removal of such iron and manganese. Due to the high Al2O3 and SiO2 content in WTR, therefore, this research proposes the use of WTR as the source material for geopolymer production for Fe/Mn removal. With the availability of free alkali in the geopolymer framework, the OH--releasing behavior of the WTR-based geopolymer was investigated by the precipitation of Fe(II) ion. The WTR-based geopolymer was calcined at 400 °C and 600 °C to obtain a strong geopolymer matrix with the ability to remove Fe/Mn ions. The results show that the WTR-based geopolymer has the potential to remove Fe from Fe-contaminated water. Hydroxide ions are released from the geopolymer and form an Fe(OH)3 precipitate. Geopolymer with a calcination temperature of 400 °C provides total removal of the Fe after 24 h of immersion. In addition, the existence of Fe(OH)3 helps to coprecipitate the Mn(OH)2 in the Fe/Mn solution leading to a significant reduction of Mn from the solution. The pH value and retention time play an important role in the final metal concentration. The final pH of the solution is close to 8.5, which is the recommended value for boiler water. This method offers an alternative use of WTR in making a porous geopolymer for groundwater Fe/Mn removal using a simple method.


Assuntos
Água Subterrânea , Purificação da Água , Íons , Ferro/análise , Manganês/análise , Porosidade , Dióxido de Silício
16.
Polymers (Basel) ; 13(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201841

RESUMO

Flexible dielectric polymer composites have been of great interest as embedded capacitor materials in the electronic industry. However, a polymer composite has a low relative dielectric permittivity (ε' < 100), while its dielectric loss tangent is generally large (tanδ > 0.1). In this study, we fabricate a novel, high-permittivity polymer nanocomposite system with a low tanδ. The nanocomposite system comprises poly(vinylidene fluoride) (PVDF) co-filled with Au nanoparticles and semiconducting TiO2 nanorods (TNRs) that contain Ti3+ ions. To homogeneously disperse the conductive Au phase, the TNR surface was decorated with Au-NPs ~10-20 nm in size (Au-TNRs) using a modified Turkevich method. The polar ß-PVDF phase was enhanced by the incorporation of the Au nanoparticles, partially contributing to the enhanced ε' value. The introduction of the Au-TNRs in the PVDF matrix provided three-phase Au-TNR/PVDF nanocomposites with excellent dielectric properties (i.e., high ε' ≈ 157 and low tanδ ≈ 0.05 at 1.8 vol% of Au and 47.4 vol% of TNRs). The ε' of the three-phase Au-TNR/PVDF composite is ~2.4-times higher than that of the two-phase TNR/PVDF composite, clearly highlighting the primary contribution of the Au nanoparticles at similar filler loadings. The volume fraction dependence of ε' is in close agreement with the effective medium percolation theory model. The significant enhancement in ε' was primarily caused by interfacial polarization at the PVDF-conducting Au nanoparticle and PVDF-semiconducting TNR interfaces, as well as by the induced ß-PVDF phase. A low tanδ was achieved due to the inhibited conducting pathway formed by direct Au nanoparticle contact.

17.
Polymers (Basel) ; 13(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071685

RESUMO

The enhanced dielectric permittivity (ε') while retaining a low loss tangent (tanδ) in silver nanoparticle-(In1/2Nb1/2)0.1Ti0.9O2/poly(vinylidene fluoride) (Ag-INTO/PVDF) composites with different volume fractions of a filler (fAg-INTO) was investigated. The hybrid particles were fabricated by coating Ag nanoparticles onto the surface of INTO particles, as confirmed by X-ray diffraction. The ε' of the Ag-INTO/PVDF composites could be significantly enhanced to ~86 at 1 kHz with a low tanδ of ~0.044. The enhanced ε' value was approximately >8-fold higher than that of the pure PVDF polymer for the composite with fAg-INTO = 0.5. Furthermore, ε' was nearly independent of frequency in the range of 102-106 Hz. Therefore, filling Ag-INTO hybrid particles into a PVDF matrix is an effective way to increase ε' while retaining a low tanδ of polymer composites. The effective medium percolation theory model can be used to fit the experimental ε' values with various fAg-INTO values. The greatly increased ε' primarily originated from interfacial polarization at the conducting Ag nanoparticle-PVDF and Ag-INTO interfaces, and it was partially contributed by the high ε' of INTO particles. A low tanδ was obtained because the formation of the conducting network in the polymer was inhibited by preventing the direct contact of Ag nanoparticles.

18.
Int J Biol Macromol ; 181: 349-356, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33781815

RESUMO

Zinc oxide nanoparticles (nano-ZnO) are attractive as fertilizer materials but high concentrations may negatively affect the environment. To reduce their dispersion in the environment we entrapped nano-ZnO in biodegradable polymer beads consisting of alginate and polyvinyl alcohol (PVA). The alginate/PVA/ZnO beads were prepared via ionotropic gelation using two different crosslinking ions (Ca2+ and Zn2+), and the effect of alginate crosslinking ion and PVA content on bead structure, water absorption, water retention and zinc release was investigated. The pure CaAlg and ZnAlg beads demonstrated a poor water absorption and retention, which were strongly enhanced by the incorporation of PVA into the beads. The continuous Zn release was measured in a sand column, and it was found that the Zn-crosslinked beads rapidly released high concentrations of Zn followed by a more gradual Zn release, whereas Ca alginates showed only a gradual Zn release. The Zn dissolution kinetics could be tuned by the crosslinking ion composition. The prepared nano-ZnO-containing alginate/PVA beads may be attractive for Zn fertilizer applications under water-limited conditions.


Assuntos
Alginatos/química , Reagentes de Ligações Cruzadas/química , Fertilizantes , Microesferas , Nanopartículas/química , Álcool de Polivinil/química , Óxido de Zinco/química , Custos e Análise de Custo , Íons , Cinética , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Mater Sci Eng C Mater Biol Appl ; 118: 111333, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33254965

RESUMO

The highly pure and crystalline calcium carbonate (CaCO3) and calcium oxide (CaO) with small amounts of As, Cd, Hg, and Pb were prepared by calcinating shells of a golden apple snail. Solid-state reaction and mechanical activation between the CaCO3 and CaO from calcined golden apple snail shells and dibasic calcium phosphate dihydrate (CaHPO4•2H2O, DCPD) were performed to develop calcium phosphate powders. The effects of the milling media used on the mechanical activation were examined. A solid-state reaction of manually mixed CaCO3 or CaO with DCPD powders at a temperature of 1100 °C produced mostly ß-tricalcium phosphate (ß-TCP). Hydroxyapatite (HAp) with a small quantity of ß-TCP could be produced from a mixed CaCO3 + DCPD powder using dry and wet mechanical activations with distilled water, alcohol and acetone and from a mixed CaO + DCPD powder using dry mechanical activation combined with a solid-state reaction at a temperature of 1100 °C. A phase change of milled powders to ß-TCP was clearly observed from a wet mechanical activation of CaO + DCPD powder with distilled water or alcohol in a solid-state reaction. The thermal instability of HAp powders from a combined mechanical activation with solid-state reaction of CaCO3 or CaO and DCPD powders could result from two factors. The first is that the pollution was released from the balls and pot mill materials during the mechanical process. Another factor is a reduced level of calcium in the CaO + DCPD mixed powder due to a reaction between CaO and water or alcohol during mechanical milling.


Assuntos
Materiais Biocompatíveis , Compostos de Cálcio , Fosfatos de Cálcio , Teste de Materiais , Óxidos , Pós , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA