Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Metab ; 34(3): 487-501.e8, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235776

RESUMO

The Krebs cycle-derived metabolite itaconate and its derivatives suppress the inflammatory response in pro-inflammatory "M1" macrophages. However, alternatively activated "M2" macrophages can take up itaconate. We therefore examined the effect of itaconate and 4-octyl itaconate (OI) on M2 macrophage activation. We demonstrate that itaconate and OI inhibit M2 polarization and metabolic remodeling. Examination of IL-4 signaling revealed inhibition of JAK1 and STAT6 phosphorylation by both itaconate and OI. JAK1 activation was also inhibited by OI in response to IL-13, interferon-ß, and interferon-γ in macrophages and in T helper 2 (Th2) cells. Importantly, JAK1 was directly modified by itaconate derivatives at multiple residues, including cysteines 715, 816, 943, and 1130. Itaconate and OI also inhibited JAK1 kinase activity. Finally, OI treatment suppressed M2 macrophage polarization and JAK1 phosphorylation in vivo. We therefore identify itaconate and OI as JAK1 inhibitors, suggesting a new strategy to inhibit JAK1 in M2 macrophage-driven diseases.


Assuntos
Ativação de Macrófagos , Macrófagos , Janus Quinase 1/metabolismo , Janus Quinase 1/farmacologia , Macrófagos/metabolismo , Transdução de Sinais , Succinatos
2.
Transl Oncol ; 14(3): 101013, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33516089

RESUMO

Copy Number Alterations (CNAs) represent the most common genetic alterations identified in ovarian cancer cells, being responsible for the extensive genomic instability observed in this cancer. Here we report the identification of CNAs in a cohort of Italian patients affected by ovarian cancer performed by SNP-based array. Our analysis allowed the identification of 201 significantly altered chromosomal bands (70 copy number gains; 131 copy number losses). The 3300 genes subjected to CNA identified here were compared to those present in the TCGA dataset. The analysis allowed the identification of 11 genes with increased CN and mRNA expression (PDCD10, EBAG9, NUDCD1, ENY2, CSNK2A1, TBC1D20, ZCCHC3, STARD3, C19orf12, POP4, UQCRFS1). PDCD10 was selected for further studies because of the highest frequency of CNA. PDCD10 was found, by immunostaining of three different Tissue Micro Arrays, to be over-expressed in the majority of ovarian primary cancer samples and in metastatic lesions. Moreover, significant correlations were found in specific subsets of patients, between increased PDCD10 expression and grade (p < 0.005), nodal involvement (p < 0.05) or advanced FIGO stage (p < 0.01). Finally, manipulation of PDCD10 expression by shRNA in ovarian cancer cells (OVCAR-5 and OVCA429) demonstrated a positive role for PDCD10 in the control of cell growth and motility in vitro and tumorigenicity in vivo. In conclusion, this study allowed the identification of novel genes subjected to copy number alterations in ovarian cancer. In particular, the results reported here point to a prominent role of PDCD10 as a bona fide oncogene.

3.
Cells ; 9(6)2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575749

RESUMO

Ferroptosis is a new type of oxidative regulated cell death (RCD) driven by iron-dependent lipid peroxidation. As major sites of iron utilization and master regulators of oxidative metabolism, mitochondria are the main source of reactive oxygen species (ROS) and, thus, play a role in this type of RCD. Ferroptosis is, indeed, associated with severe damage in mitochondrial morphology, bioenergetics, and metabolism. Furthermore, dysregulation of mitochondrial metabolism is considered a biochemical feature of neurodegenerative diseases linked to ferroptosis. Whether mitochondrial dysfunction can, per se, initiate ferroptosis and whether mitochondrial function in ferroptosis is context-dependent are still under debate. Cancer cells accumulate high levels of iron and ROS to promote their metabolic activity and growth. Of note, cancer cell metabolic rewiring is often associated with acquired sensitivity to ferroptosis. This strongly suggests that ferroptosis may act as an adaptive response to metabolic imbalance and, thus, may constitute a new promising way to eradicate malignant cells. Here, we review the current literature on the role of mitochondria in ferroptosis, and we discuss opportunities to potentially use mitochondria-mediated ferroptosis as a new strategy for cancer therapy.


Assuntos
Morte Celular/fisiologia , Ferroptose/fisiologia , Ferro/metabolismo , Mitocôndrias/metabolismo , Animais , Humanos , Neoplasias/patologia , Espécies Reativas de Oxigênio/metabolismo
4.
Front Oncol ; 10: 698, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32432042

RESUMO

The cell-microenvironment communication is essential for homing of hematopoietic stem cells in stromal niches. Recent evidences support the involvement of epithelial-to-mesenchymal (EMT) process in hematopoietic stem cell homeostasis as well as in leukemia cells invasiveness and migration capability. Here, we demonstrate that the alteration of iron homeostasis and the consequent increase of redox metabolism, mediated by the stable knock down of ferritin heavy chain (FtH), enhances the expression of CXCR4 in K562 erythroleukemia cells, thus promoting CXCL12-mediated motility. Indeed, addition of the CXCR4 receptor antagonist AMD3100 reverts this effect. Upon FtH knock down K562 cells also acquire an "EMT-like" phenotype, characterized by the increase of Snail, Slug and Vimentin with the parallel loss of E-cadherin. By using fibronectin as substrate, the cell adhesion assay further shows a reduction of cell adhesion capability in FtH-silenced K562 cells. Accordingly, confocal microscopy shows that adherent K562 control cells display a variety of protrusions while FtH-silenced K562 cells remain roundish. These phenomena are largely due to the reactive oxygen species (ROS)-mediated up-regulation of HIF-1α/CXCR4 axis which, in turn, promotes the activation of NF-κB and the enhancement of EMT features. These data are confirmed by treatments with either N-acetylcysteine (NAC) or AMD3100 or NF-κB inhibitor IκB-alpha which revert the FtH-silenced K562 invasive phenotype. Overall, our findings demonstrate the existence of a direct relationship among iron metabolism, redox homeostasis and EMT in the hematological malignancies. The effects of FtH dysregulation on CXCR4/CXCL12-mediated K562 cell motility extend the meaning of iron homeostasis in the leukemia cell microenvironment.

5.
Oxid Med Cell Longev ; 2019: 3461251, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781333

RESUMO

Reactive oxygen species (ROS) mediates cisplatin-induced cytotoxicity in tumor cells. However, when cisplatin-induced ROS do not reach cytotoxic levels, cancer cells may develop chemoresistance. This phenomenon can be attributed to the inherited high expression of antioxidant protein network. H-Ferritin is an important member of the antioxidant system due to its ability to store iron in a nontoxic form. Altered expression of H-Ferritin has been described in ovarian cancers; however, its functional role in cisplatin-based chemoresistance of this cancer type has never been explored. Here, we investigated whether the modulation of H-Ferritin might affect cisplatin-induced cytotoxicity in ovarian cancer cells. First, we characterized OVCAR3 and OVCAR8 cells for their relative ROS and H-Ferritin baseline amounts. OVCAR3 exhibited lower ROS levels compared to OVCAR8 and greater expression of H-Ferritin. In addition, OVCAR3 showed pronounced growth potential and survival accompanied by the strong activation of pERK/pAKT and overexpression of c-Myc and cyclin E1. When exposed to different concentrations of cisplatin, OVCAR3 were less sensitive than OVCAR8. At the lowest concentration of cisplatin (6 µM), OVCAR8 underwent a consistent apoptosis along with a downregulation of H-Ferritin and a consistent increase of ROS levels; on the other hand, OVCAR3 cells were totally unresponsive, H-Ferritin was almost unaffected, and ROS amounts met a slight increase. Thus, we assessed whether the modulation of H-Ferritin levels was able to affect the cisplatin-mediated cytotoxicity in both the cell lines. H-Ferritin knockdown strengthened cisplatin-mediated ROS increase and significantly restored sensitivity to 6 µM cisplatin in resistant OVCAR3 cells. Conversely, forced overexpression of H-Ferritin significantly suppressed the cisplatin-mediated elevation of intracellular ROS subsequently leading to a reduced responsiveness in OVCAR8 cells. Overall, our findings suggest that H-Ferritin might be a key protein in cisplatin-based chemoresistance and that its inhibition may represent a potential approach for enhancing cisplatin sensitivity of resistant ovarian cancer cells.


Assuntos
Apoferritinas/metabolismo , Cisplatino/farmacologia , Citotoxinas/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Adulto , Idoso , Linhagem Celular Tumoral , Intervalo Livre de Doença , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Taxa de Sobrevida
7.
Int J Mol Sci ; 19(10)2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30274235

RESUMO

Nuclear Factor-κB (NF-κB) is frequently activated in tumor cells contributing to aggressive tumor growth and resistance to chemotherapy. Here we demonstrate that Ferritin Heavy Chain (FHC) protein expression inversely correlates with NF-κB activation in cancer cell lines. In fact, FHC silencing in K562 and SKOV3 cancer cell lines induced p65 nuclear accumulation, whereas FHC overexpression correlated with p65 nuclear depletion in the same cell lines. In FHC-silenced cells, the p65 nuclear accumulation was reverted by treatment with the reactive oxygen species (ROS) scavenger, indicating that NF-κB activation was an indirect effect of FHC on redox metabolism. Finally, FHC knock-down in K562 and SKOV3 cancer cell lines resulted in an improved cell viability following doxorubicin or cisplatin treatment, being counteracted by the transient expression of inhibitory of NF-κB, IκBα. Our results provide an additional layer of information on the complex interplay of FHC with cellular metabolism, and highlight a novel scenario of NF-κB-mediated chemoresistance triggered by the downregulation of FHC with potential therapeutic implications.


Assuntos
Apoferritinas/genética , Resistencia a Medicamentos Antineoplásicos , Inativação Gênica , NF-kappa B/metabolismo , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Células K562 , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA