Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Eur J Pharm Biopharm ; 195: 114175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185191

RESUMO

Exosomes, biogenic nano-vesicles, are renowned for their ability to encapsulate diverse payloads, however the systematic development and validation of exosomal formulation with significant biological implications have been overlooked. Herein, we developed and validated Exo-DTX, a QbD-driven optimized RAW 264.7 cell derived exosomal anti-cancer formulation of docetaxel (DTX) and evaluate its anti-metastatic and apoptotic efficacy in TNBC 4T1 cells. RAW264.7-derived exosomes were having particle size (112.5 ± 21.48 nm) and zeta-potential (-10.268 ± 3.66 mV) with polydispersity (PDI:0.256 ± 0.03). The statistical optimization of exosomes (200 µg) with Exo: DTX ratio 4:1 confirmed encapsulation of 23.60 ± 1.54 ng DTX/ µg exosomes. Exo-DTX (∼189 nm, -11.03 mV) with 100 ng/ml DTX as payload exhibited ∼5 folds' improvement in IC50 of DTX and distinct cytoskeletal deformation in TNBC 4T1 cells. It also has shown enormous Filamentous actin (F-actin) degradation and triggered apoptosis explained Exo-DTX's effective anti-migratory impact with just 2.6 ± 6.33 % wound closure and 4.56 ± 1.38 % invasion. The western blot confirmed that Exo-DTX downregulated migratory protein EGFR and ß1-integrin but raised cleaved caspase 3/caspase 3 (CC3/C3) ratio and BAX/BCL-2 ratio by about 2.70 and 4.04 folds respectively. The naive RAW 264.7 exosomes also contributed positively towards the effect of Exo-DTX formulation by suppressing ß1-integrin expression and increasing the CC3/C3 ratio in TNBC 4T1 cells as well. Additionally, significant improvement in PK parameters of Exo-DTX was observed in comparison to Taxotere, 6-folds and 3.04-folds improved t1/2 and Vd, proving the translational value of Exo-DTX formulation. Thus, the Exo-DTX so formulated proved beneficial in controlling the aggressiveness of TNBC wherein, naive exosomes also demonstrated beneficial synergistic anti-proliferative effect in 4T1.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Docetaxel/farmacocinética , Caspase 3 , Macrófagos , Integrinas , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral
3.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119631, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37967794

RESUMO

Efficient protein synthesis is a basic requirement of our cells to replace the old or defective proteins from the intrinsic crowded biomolecular environment. The interconnection among synthesis, folding, and degradation of proteins represents central paradigm to proteostasis. Failure of protein quality control (PQC) mechanisms results in the disturbance and inadequate functions of proteome. The consequent misfolded protein accumulation can form the basis of neurodegeneration onset and largely represents imperfect aging. Understanding how cells improve the function of deregulated PQC mechanisms to establish and maintain proteostasis against the unwanted sequestration of normal proteins with misfolded proteinaceous inclusions is a major challenge. Here we show that treatment of Lanosterol, a cholesterol synthesis pathway intermediate, induces Proteasome proteolytic activities and, therefore, supports the PQC mechanism for the elimination of intracellular aberrant proteins. The exposure of Lanosterol not only promotes Proteasome catalytic functions but also elevates the removal of both bona fide and neurodegenerative diseases associated toxic proteins. Our current study suggests that increasing Proteasome functions with the help of small molecules such as Lanosterol could serve as a cytoprotective therapeutic approach against abnormal protein accumulation. Cumulatively, based on findings in this study, we can understand the critical importance of small molecules and their potential therapeutic influence in re-establishing disturbed proteostasis linked with neurodegeneration.


Assuntos
Complexo de Endopeptidases do Proteassoma , Dobramento de Proteína , Complexo de Endopeptidases do Proteassoma/metabolismo , Lanosterol/farmacologia , Proteínas/metabolismo , Proteostase
4.
J Control Release ; 369: 684-686, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37778467
5.
J Pharmacol Exp Ther ; 388(1): 81-90, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37863489

RESUMO

Dysregulation of various glucoregulatory hormones lead to failure of insulin monotherapy in patients with diabetes mellitus due to various reasons, including severe hypoglycemia, glycemic hypervariability, and an increased risk of microvascular complications. However, pramlintide as an adjunct to insulin therapy enhances glucagon suppression and thereby offers improved glycemic control. Clinical studies have shown that pramlintide improves glycemic control, reduces postprandial glucose excursions, and promotes weight loss in patients with type 1 and type 2 diabetes. Although clinical benefits of pramlintide are well reported, there still exists a high patient resistance for the therapy, as separate injections for pramlintide and insulin must be administered. Although marketed insulin formulations generally demonstrate a peak action in 60-90 minutes, pramlintide elicits its peak concentration at around 20-30 minutes after administration. Thus, owing to the significant differences in pharmacokinetics of exogenously administered pramlintide and insulin, the therapy fails to elicit its action otherwise produced by the endogenous hormones. Hence, strategies such as delaying the release of pramlintide by using inorganic polymers like silica, synthetic polymers like polycaprolactone, and lipids have been employed. Also, approaches like noncovalent conjugation, polyelectrolyte complexation, and use of amphiphilic excipients for codelivery of insulin and pramlintide have been explored to address the issues with pramlintide delivery and improve patient adherence to the therapy. This approach may usher in a new era of diabetes management, offering patients multiple options to tailor their treatment and improve their quality of life. SIGNIFICANCE STATEMENT: To our knowledge, this is the first report that summarizes various challenges in insulin and pramlintide codelivery and strategies to overcome them. The paper also provides deeper insights into various novel formulation strategies for pramlintide that could further broaden the reader's understanding of peptide codelivery.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Insulina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Qualidade de Vida , Polímeros , Glicemia
6.
J Mater Chem B ; 11(45): 10859-10872, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37938124

RESUMO

Despite various treatment modalities for breast cancer, it still persists as one of the most diagnosed types of cancer in females. The recent investigations in the epigenetics of breast cancer reveal several aberrations in the expression levels of various HDAC enzymes. Henceforth, the present work entails the formulation and characterization of a lipid polymer-based hybrid nanoparticulate (LPN) system for delivery of an epigenetic modulator drug, Belinostat, for its clinical application in breast cancer. The size of Belinostat nanoparticles prepared using a modified hot homogenization method was found to be 166.6 ± 19.95 nm with an encapsulation efficiency of 94.5 ± 5.1%. In vitro characterization for cytotoxicity, cellular uptake, and protein expression in two different breast cancer cells, 4T1 and MCF 7, revealed the superiority of the formulation in comparison with the free drug in MCF 7 cells. Subsequently, the behaviour of the formulation in in vivo settings of healthy and breast cancer xenograft bearing animals was analyzed using pharmacokinetic and biodistribution studies. The results revealed that the formulation demonstrated multi-fold improvement in the pharmacokinetic parameters in tumor bearing animals when compared with the free drug while no difference in pharmacokinetic behaviour was observed in healthy animals indicating the altered biodistribution and specificity of the formulation in breast tumor. This was confirmed by the biodistribution studies exhibiting 20-fold improved uptake and retention of the nanoparticulate formulation in tumor tissues of the animal model at the end of 4 h. Thus, the developed LPN system holds potential to act as a novel drug delivery system for Belinostat with several advantages over the free drug.


Assuntos
Neoplasias da Mama , Animais , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Polímeros/metabolismo , Distribuição Tecidual , Linhagem Celular Tumoral , Lipídeos
7.
Org Biomol Chem ; 21(33): 6719-6729, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37555287

RESUMO

A Pd(II)-catalyzed strategy for the diastereo- and regioselective (hetero)arylation of unactivated C(sp3)-H bonds in bile acids is accomplished with aryl and heteroaryl iodides under solvent-free conditions using the 8-aminoquinoline auxiliary as a directing group. This methodology demonstrated excellent functional group tolerance with respect to aryl/heteroaryl iodides on O-protected N-(quinolin-8-yl)cholyl/deoxycholyl amides to afford ß-C(sp3)-H (hetero)arylated products in good-to-excellent yields. Moreover, the 8-aminoquinoline (AQ) auxiliary can easily be removed to obtain modified bile acids.

8.
J Control Release ; 359: 161-174, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37182806

RESUMO

Glioblastoma multiforme (GBM) is the deadliest brain tumor with a poor prognosis and limited therapeutic options. Temozolomide (TMZ) is the first-line chemotherapeutic agent used for the treatment of GBM; however, it suffers from several limitations, including short half-life, rapid metabolism, <1% brain bioavailability, methyl guanine methyl transferase (MGMT) based chemoresistance, and hematological toxicities. Several approaches have been adopted to overcome these limitations, particularly by using nanotechnology-based systems, but its physicochemical properties make TMZ challenging to load into these nanocarriers. In the current research, we conjugated TMZ with different fatty acids, i.e., linoleic acid (LA), oleic acid (OA), and palmitic acid (PA), to obtain TMZ-fatty acid conjugates, which are comparatively hydrophobic, less prone to degradation and potent. These conjugates were thoroughly characterized using 1H NMR spectroscopy, high-resolution mass spectrometry (HR-MS), and reverse phase-high performance liquid chromatography (RP-HPLC). The synthesized conjugates, namely Temozolomide-oleic acid (TOA,6R1), Temozolomide-linoleic acid (TLA, 6R2), and Temozolomide-palmitic acid (TPA, 6R3), showed an IC50 of 101.4, 67.97, and 672.04 µM, respectively in C6 cells and 428.257, 366.43 and 413.69 µM, respectively in U87-MG cells. On the other hand, the free TMZ showed an IC50 of >1000 µM and 564.23 µM in C6 and U87-MG, respectively. Further, the in vivo efficacy of the TMZ-fatty acid conjugates was evaluated in the C6-induced orthotropic rat glioblastoma model, wherein the TMZ-fatty acid conjugate showed improved survival rate (1.6 folds) and overall health of the animals. Collectively, the conjugation of fatty acids with TMZ improves its anticancer potential against glioblastoma multiforme (GBM).


Assuntos
Neoplasias Encefálicas , Glioblastoma , Ratos , Animais , Temozolomida/uso terapêutico , Glioblastoma/metabolismo , Antineoplásicos Alquilantes/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Ácidos Graxos , Linhagem Celular Tumoral , Neoplasias Encefálicas/metabolismo , Ácidos Linoleicos/uso terapêutico , Ácidos Palmíticos/uso terapêutico , Ácidos Oleicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Macromol Rapid Commun ; 44(14): e2300101, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37186473

RESUMO

CRISPR/Cas9 has proven its accuracy and precision for gene editing by making a double-strand break at the predetermined site. Despite being a mainstream gene editing tool, CRISPR/Cas9 has limitations for its in vivo delivery due to the physico-chemical properties such as high molecular weight, supranegative charge, degradation in the presence of nucleases, etc. Hereby, a cationic lipopolymer is explored for its efficiency in delivering CRISPR/Cas9 plasmid (pCas9) in vitro and in vivo. The lipopolymer is utilized to form blank cationic nanoplexes having a zeta potential of +15.8 ± 0.7 mV. Being cationic, the blank nanoplexes are able to condense the pCas9 plasmid at a ratio of 1:20 with a complexation efficiency of ≈98% and show a size and zeta potential of ≈141 ± 16 nm and 4.2 mV ± 0.7, respectively. The pCas9-loaded nanoplexes show a transfection efficiency of ≈69% in ARPE-19 cells and show ≈22% of indel frequency, indicating the successful translation of Cas9 protein and guide RNA in the cytosol. Further, they are found to be stable under in vivo environment when given intravenously in Swiss albino mice. These lipopolymeric nanoplexes can be a potential carrier for CRISPR plasmids for genome editing applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Camundongos , Proteína 9 Associada à CRISPR/metabolismo , Transfecção , Plasmídeos/genética
10.
Life Sci ; 322: 121621, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001803

RESUMO

AIM: Exosomes, as a nanocarrier for the co-delivery of biologicals and small anticancer molecules is yet in its infancy. Herein, we investigated hUCBMSC derived exosomes as a biogenic nanocarrier for the co-delivery of tumor suppressor miR-125a and microtubule destabilizing Docetaxel (DTX) to target the proliferative and migratory aggressiveness of the murine TNBC 4T1 cells. MAIN METHODS: In this study, hUCBMSCs from the human umbilical cord blood cells (hUCB) were successfully transfected with miR-125a. Thereafter, DTX was encapsulated into both non-transfected and transfected exosomes by optimized mild sonication-incubation technique. The anticancer efficiency of hUCBMSC Exo-DTX and miR-125a Exo-DTX was compared by MTT and morphometric assay. The prominent anti-metastatic behaviour of the latter was confirmed by in-vitro wound healing and transwell invasion assay. Further, the synergistic effect of miR-125a and DTX was confirmed by F-actin and nuclear degradation by confocal and FESEM assay. KEY FINDINGS: hUCBMSC exosomes exhibited DTX payload of 8.86 ± 1.97 ng DTX/ µg exosomes and miRNA retention capacity equivalent to 12.31 ± 5.73 %. The co-loaded formulation (miR-125a Exo-DTX) exhibited IC50 at 192.8 ng/ml in 4T1 cells, which is almost 2.36 folds' lower than the free DTX IC50 (472.8 ng/ml). Additionally, miR-125a Exo-DTX treatment caused wound broadening upto 6.14±0.38 % while treatment with free DTX and miR-125a exosomes alone caused 18.71±4.5 % and 77.36±10.4 % of wound closure respectively in 36 h. miR-125a Exo-DTX treatment further exhibited significantly reduced invasiveness of 4T1 cells (by 3.5 ± 1.8 %) along with prominent cytoskeletal degradation and nuclear deformation as compared to the miR-125a exosomes treated group. The miR-125a expressing DTX loaded exosomal formulation clearly demonstrated the synergistic apoptotic and anti-migratory efficiency of the miR-125a Exo-DTX. SIGNIFICANCE: The synergistic anticancer and anti-metastatic effect of miR-125a Exo-DTX was observed due to presence of both DTX and miR-125a as the cargo of hUCBMSC derived exosomes.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Animais , Camundongos , Docetaxel/farmacologia , Exossomos/metabolismo , Sangue Fetal/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo
11.
Pharmaceutics ; 15(3)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36986712

RESUMO

Rotigotine (RTG) is a non-ergoline dopamine agonist and an approved drug for treating Parkinson's disease. However, its clinical use is limited due to various problems, viz. poor oral bioavailability (<1%), low aqueous solubility, and extensive first-pass metabolism. In this study, rotigotine-loaded lecithin-chitosan nanoparticles (RTG-LCNP) were formulated to enhance its nose-to-brain delivery. RTG-LCNP was prepared by self-assembly of chitosan and lecithin due to ionic interactions. The optimized RTG-LCNP had an average diameter of 108 nm with 14.43 ± 2.77% drug loading. RTG-LCNP exhibited spherical morphology and good storage stability. Intranasal RTG-LCNP improved the brain availability of RTG by 7.86 fold with a 3.84-fold increase in the peak brain drug concentration (Cmax(brain)) compared to intranasal drug suspensions. Further, the intranasal RTG-LCNP significantly reduced the peak plasma drug concentration (Cmax(plasma)) compared to intranasal RTG suspensions. The direct drug transport percentage (DTP (%)) of optimized RTG-LCNP was found to be 97.3%, which shows effective direct nose-to-brain drug uptake and good targeting efficiency. In conclusion, RTG-LCNP enhanced drug brain availability, showing the potential for clinical application.

12.
Int J Pharm ; 631: 122508, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36539166

RESUMO

Asiaticoside (AST) is a naturally available phytoconstituent that enables effective wound healing mainly by promoting collagen biosynthesis. However, the physicochemical nature of AST such as high molecular weight (959.12 g/mol), poor water solubility and poor permeability limits its therapeutic effects. This study aims to develop Asiaticoside polymeric nanoparticles (AST PNP) embedded in a gelatin based biodegradable hydrogel (15 % w/v) for application in the wound cavity to enable sustained release of AST and enhance its therapeutic effects. The AST PNP were fabricated in the desired size range (168.4 nm; PDI (0.09)) and the morphology, rate of fluid uptake, rate of water loss, and water vapor transmission rate of AST PNP incorporated hydrogel were determined. AST PNP gel showed porous structural morphology and possessed ideal characteristics as a graft for wound healing. The drug release kinetics and cellular uptake of AST PNP were investigated wherein, AST PNP demonstrated sustained release profile upto 24 h in comparison to free AST (complete release within 6 h) and exhibited an enhanced intra-cellular uptake in fibroblasts within 3 h compared to the free drug. In-vitrocell culture studies also demonstrated significant proliferation and migration of fibroblasts in the presence of AST PNP. Additionally, AST PNP gel upon application to the wounds of diabetic rats depicted improved wound healing efficacy in terms of improved collagen biosynthesis, upregulated COL-1 protein level (∼1.85 fold vs free AST), and enhanced expression of α-SMA compared to control groups. Altogether, formulation of AST as polymeric nanoparticles in a gel based carrier offered significant improvement in the therapeutic properties of AST for the management of diabetic wounds.


Assuntos
Diabetes Mellitus Experimental , Nanopartículas , Ratos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Preparações de Ação Retardada/farmacologia , Cicatrização , Colágeno/química , Nanopartículas/química , Hidrogéis/química
13.
Asian J Pharm Sci ; 17(2): 153-176, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36320315

RESUMO

CRISPR/Cas, an adaptive immune system in bacteria, has been adopted as an efficient and precise tool for site-specific gene editing with potential therapeutic opportunities. It has been explored for a variety of applications, including gene modulation, epigenome editing, diagnosis, mRNA editing, etc. It has found applications in retinal dystrophic conditions including progressive cone and cone-rod dystrophies, congenital stationary night blindness, X-linked juvenile retinoschisis, retinitis pigmentosa, age-related macular degeneration, leber's congenital amaurosis, etc. Most of the therapies for retinal dystrophic conditions work by regressing symptoms instead of reversing the gene mutations. CRISPR/Cas9 through indel could impart beneficial effects in the reversal of gene mutations in dystrophic conditions. Recent research has also consolidated on the approaches of using CRISPR systems for retinal dystrophies but their delivery to the posterior part of the eye is a major concern due to high molecular weight, negative charge, and in vivo stability of CRISPR components. Recently, non-viral vectors have gained interest due to their potential in tissue-specific nucleic acid (miRNA/siRNA/CRISPR) delivery. This review highlights the opportunities of retinal dystrophies management using CRISPR/Cas nanomedicine.

14.
J Mater Chem B ; 10(37): 7634-7649, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35946380

RESUMO

sgRNA/Cas9 ribonucleoproteins (RNPs) provide a site-specific robust gene-editing approach avoiding the mutagenesis and unwanted off-target effects. However, the high molecular weight (∼165 kDa), hydrophilicity and net supranegative charge (∼-20 mV) hinder the intracellular delivery of these RNPs. In the present study, we have prepared cationic RNPs lipopolymeric nanoplexes that showed a size of 117.3 ± 7.64 nm with +6.17 ± 1.04 mV zeta potential and >90% entrapment efficiency of RNPs. Further, these RNPs lipopolymeric nanoplexes showed good complexation efficiency and were found to be stable for 12 h with fetal bovine serum. These RNPs lipopolymeric nanoplexes did not induce any significant cytotoxicity in HEK293T cells, and were efficiently uptaken via a clathrin-mediated pathway with optimal transfection efficiency and nuclear localization after 48 h. Further, HEK293T cells having the mGFP insert were used as a cell line model for gene editing, wherein the loss of the mGFP signal was observed as a function of gene editing after transfection with mGFP targeting RNPs lipopolymeric nanoplexes. Further, the T7 endonuclease and TIDE assay data showed a decent gene editing efficiency. Additionally, the lipopolymeric nanoplexes were able to transfect muscle cells in vivo, when injected intra-muscularly. Collectively, this study explored the potential of cationic lipopolymeric nanoplexes for delivering gene-editing endonucleases.


Assuntos
Sistemas CRISPR-Cas , Ribonucleoproteínas , Sistemas CRISPR-Cas/genética , Clatrina/genética , Clatrina/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Células HEK293 , Humanos , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Soroalbumina Bovina/metabolismo
15.
Sci Rep ; 12(1): 13746, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962160

RESUMO

Sorafenib tosylate (SFB) is a multikinase inhibitor that inhibits tumour growth and proliferation for the management of breast cancer but is also associated with issues like toxicity and drug resistance. Also, being a biopharmaceutical class II (BCS II) drug, its oral bioavailability is the other challenge. Henceforth, this report intended to encapsulate SFB into a biocompatible carrier with biodegradable components, i.e., phospholipid. The microemulsion of the SFB was prepared and characterized for the surface charge, morphology, micromeritics and drug release studies. The cell viability assay was performed on 4T1 cell lines and inferred that the IC50 value of sorafenib-loaded microemulsion (SFB-loaded ME) was enhanced compared to the naïve SFB at the concentrations of about 0.75 µM. More drug was available for the pharmacological response, as the protein binding was notably decreased, and the drug from the developed carriers was released in a controlled manner. Furthermore, the pharmacokinetic studies established that the developed nanocarrier was suitable for the oral administration of a drug by substantially enhancing the bioavailability of the drug to that of the free SFB. The results bring forth the preliminary evidence for the future scope of SFB as a successful therapeutic entity in its nano-form for effective and safer cancer chemotherapy via the oral route.


Assuntos
Neoplasias da Mama , Nanopartículas , Administração Oral , Disponibilidade Biológica , Neoplasias da Mama/tratamento farmacológico , Sobrevivência Celular , Portadores de Fármacos , Liberação Controlada de Fármacos , Feminino , Humanos , Nanopartículas/química , Sorafenibe/farmacologia
16.
J Control Release ; 350: 494-513, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35985493

RESUMO

Temozolomide (TMZ), an imidazotetrazine, is a second-generation DNA alkylating agent used as a first-line treatment of glioblastoma multiforme (GBM). It was approved by FDA in 2005 and declared a blockbuster drug in 2008. Although TMZ has shown 100% oral bioavailability and crosses the blood-brain barrier effectively, however it suffers from limitations such as a short half-life (∼1.8 h), rapid metabolism, and lesser accumulation in the brain (∼10-20%). Additionally, development of chemoresistance has been associated with its use. Since it is a potential chemotherapeutic agent with an unmet medical need, advanced delivery strategies have been explored to overcome the associated limitations of TMZ. Nanocarriers including liposomes, solid lipid nanoparticles (SLNs), nanostructure lipid carriers (NLCs), and polymeric nanoparticles have demonstrated their ability to improve its circulation time, stability, tissue-specific accumulation, sustained release, and cellular uptake. Because of the appreciable water solubility of TMZ (∼5 mg/mL), the physical loading of TMZ in these nanocarriers is always challenging. Alternatively, the conjugation approach, wherein TMZ has been conjugated to polymers or small molecules, has been explored with improved outcomes in vitro and in vivo. This review emphasized the practical evidence of the conjugation strategy to improve the therapeutic potential of TMZ in the treatment of glioblastoma multiforme.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Alquilantes/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Preparações de Ação Retardada/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Humanos , Lipídeos/química , Lipossomos/uso terapêutico , Nanopartículas , Polímeros/uso terapêutico , Temozolomida/uso terapêutico , Água
17.
Food Chem Toxicol ; 167: 113260, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35777714

RESUMO

Preclinical safety and proof of concept studies for a topical ointment comprising of concentrated tetrahydrocurcumin loaded lipidic nanoparticles (THC-LNs) and tacrolimus ointment (TTO) is proposed in the present investigation. The skin irritation potential and acute dermal toxicity were performed in rats in compliance with the Organization for Economic Cooperation and Development (OECD) guidelines (402, 404 and 410) while the cytotoxic potential was performed in HaCaT cells. Finally, in vivo evaluation was performed in Imiquimod mice model of psoriasis. In primary skin irritation assessment, TTO formulation, marketed formulation (Tacroz® Forte), THC-LNs, and blank LNs were topically applied on intact skin sites in rats while another group served as a negative control group for 72 h. TTO did not induce any adverse reactions. Repeated 28 days dermal toxicity followed by biochemical and histopathological assessment showed negligible alternations and skin lesions. THC-LNs revealed negligible cytotoxic potential in HaCaT cells. TTO showed significantly high anti-psoriatic activity in comparison to marketed ointment. This was also confirmed via histopathological evaluation. Based on these findings, it can be ascertained that TTO showed minimal toxicity and has ample potential for further clinical analysis. The above studies affirm the potential of TTO as an alternative for psoriasis.


Assuntos
Nanopartículas , Psoríase , Animais , Camundongos , Ratos , Curcumina/análogos & derivados , Camundongos Endogâmicos BALB C , Pomadas , Psoríase/tratamento farmacológico , Tacrolimo
18.
ACS Biomater Sci Eng ; 8(6): 2349-2362, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35522530

RESUMO

Triple-negative breast cancer (TNBC) cells show improved sensitivity for cisplatin therapy due to their defective DNA damage repair system. However, the clinical utilization of cisplatin is limited by dose-dependent systemic toxicities and chemoresistance. Cisplatin Pt(IV) derivatives having kinetically inert octahedral geometry provide an effective strategy to overcome these limitations. Upon cellular reduction, these derivatives release cisplatin and axial ligands, acting as dual-action prodrugs. Hereby, we have developed three cisplatin(IV) conjugates using distinct bioactive axial moieties (valproate, tocopherol, and chlorambucil), which can synergistically complement cisplatin activity and attack multiple cellular targets. The designed derivatives showcased enhanced antiproliferative activity and improved therapeutic synergism along with a noteworthy cisplatin dose reduction index in a panel of six cancer cells. These Pt(IV) derivatives remarkably improved cellular drug uptake and showed lower dependency on copper transporter 1 (Ctr1) for uptake than cisplatin. The results of enhanced in vitro activity were well corroborated by in vivo efficacy testing in the 4T1 cell-based TNBC model, showcasing ∼2-7-folds higher tumor volume reduction for Pt(IV) derivatives than cisplatin. In addition, the designed derivatives significantly reduced the nephrotoxicity risk involved in cisplatin therapy, indicated by systemic toxicity biomarkers and organ histopathology. The results indicated that cisplatin(IV) derivatives could open new avenues for safer synergistic chemotherapy in TNBC.


Assuntos
Antineoplásicos , Pró-Fármacos , Neoplasias de Mama Triplo Negativas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Humanos , Pró-Fármacos/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
19.
Mol Pharm ; 19(7): 1977-1998, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35481377

RESUMO

Diabetes mellitus is a chronic manifestation characterized by high levels of glucose in the blood resulting in several complications including diabetic wounds and ulcers, which predominantly require a longer duration of treatment and adversely affect the quality of life of the patients. Nanotechnology-based therapeutics (both intrinsic and extrinsic types) have emerged as a promising treatment in diabetic foot ulcer/chronic wounds owing to their unique characteristics and specific functional properties. In this review, we have focused on the significance of the use of lipids in the healing of diabetic ulcers, their interaction with the injured skin, and recent trends in lipid-based nanocarriers for the healing of diabetic wounds. Lipid nanocarriers are also being investigated for gene therapy in diabetic wound healing to encapsulate nucleic acids such as siRNA and miRNA, which could silence the expression of inflammatory cytokines overexpressed in chronic wounds. Additionally, these are also being explored for encapsulating proteins, peptides, growth factors, and other biological genetic material as therapeutic agents. Lipid-based nanocarriers encompassing a wide variety of carriers such as liposomes, niosomes, ethosomes, solid lipid nanoparticles, and lipidoid nanoparticles that are explored for the treatment of foot ulcers supplemented with relevant research studies have been discussed in the present review. Lipid-based nanodrug delivery systems have demonstrated promising wound healing potential, particularly in diabetic conditions due to the enhanced efficacy of the entrapped active molecules.


Assuntos
Diabetes Mellitus , Pé Diabético , Pé Diabético/tratamento farmacológico , Pé Diabético/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Lipídeos , Lipossomos , Nanopartículas , Qualidade de Vida
20.
Semin Cancer Biol ; 83: 570-583, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33421620

RESUMO

The understanding of the relationship between epigenetic alterations, their effects on gene expression and the knowledge that these epigenetic alterations are reversible, have opened up new therapeutic pathways for treating various diseases, including cancer. This has led the research for a better understanding of the mechanism and pathways of carcinogenesis and provided the opportunity to develop the therapeutic approaches by targeting such pathways. Epi-drugs, DNA methyl transferase (DNMT) inhibitors and histone deacetylase (HDAC) inhibitors are the best examples of epigenetic therapies with clinical applicability. Moreover, precise genome editing technologies such as CRISPR/Cas has proven their efficacy in epigenome editing, including the alteration of epigenetic markers, such as DNA methylation or histone modification. The main disadvantage with DNA gene editing technologies is off-target DNA sequence alteration, which is not an issue with epigenetic editing. It is known that cancer is linked with epigenetic alteration, and thus CRISPR/Cas system shows potential for cancer therapy via epigenome editing. This review outlines the epigenetic therapeutic approach for cancer therapy using CRISPR/Cas, from the basic understanding of cancer epigenetics to potential applications of CRISPR/Cas in treating cancer.


Assuntos
Sistemas CRISPR-Cas , Neoplasias , Sistemas CRISPR-Cas/genética , Metilação de DNA , Epigênese Genética , Epigenoma/genética , Epigenômica , Edição de Genes , Humanos , Neoplasias/genética , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA